Compare commits

...

3 Commits
main ... wip

Author SHA1 Message Date
3aa2916aef wip doenst work 2025-08-17 00:18:50 +02:00
dee14242cd lars bldc parameter 2025-08-14 13:08:14 +02:00
8af848b01b wip fw 2025-08-13 21:31:18 +02:00
8 changed files with 460 additions and 238 deletions

View File

@ -1,3 +1,3 @@
Language: Cpp
BasedOnStyle: google
ColumnLimit: 120
ColumnLimit: 140

View File

@ -199,6 +199,9 @@ void drv8323s_set_sen_lvl(struct drv8323s_foc_driver *dev,
void drv8323s_init(struct drv8323s_foc_driver *dev, int phA, int phB, int phC,
int CSn, int en, SPIClass *spi) {
if(dev == NULL || spi == NULL) {
return;
}
dev->CSn = CSn;
dev->spi = spi;
dev->en = en;

View File

@ -1,8 +1,13 @@
// #include <Preferences.h>
/*
reg.pid_position: [380.0, 0.0, 0.20000000298023224, 4.999999873689376e-05, 10000.0, 100.0]
reg.pid_velocity: [0.05000000074505806, 5.5, 0.0, 0.009999999776482582, 10000.0, 6.0, 6.0]
*/
#include <cmath>
#include "BLDCMotor.h"
#include "encoders/abs_inc_combine/AbsIncCombineSensor.h"
#include "encoders/as5047/AS5047.h"
#include "esp32-hal.h"
#define NODE_NAME "N17BLDC"
@ -11,7 +16,7 @@
#define VCS_REVISION_ID 0
#include "Arduino.h"
#include "pin_def.h"
#include "pin_def_v5.h"
#define USE_USBSERIAL
#ifdef USE_USBSERIAL
@ -31,28 +36,26 @@ USBCDC usbserial;
#include "canard.c"
#include "udral_servo.hpp"
#define spi_dev SPI
SPIClass spi_drv(FSPI);
// #include "Wire.h"
#include <SimpleFOC.h>
#include "DRV8323S.hpp"
#include "HybridStepperMotor.h"
#include "SimpleFOCDrivers.h"
#include "encoders/abs_inc_combine/AbsIncCombineSensor.h"
#include "encoders/as5047/MagneticSensorAS5047.h"
#include "encoders/calibrated/CalibratedSensor.h"
// #include "encoders/esp32hwencoder/ESP32HWEncoder.h"
#include <uavcan/pnp/NodeIDAllocationData_2_0.h>
#include "DRV8323S.hpp"
#include "HybridStepperMotor.h"
#include "esp32-hal-adc.h"
#include "esp32-hal-gpio.h"
#define TEMP(v0, b, rt, r1, vdd) ((1.0 / ((1.0 / 298.15) + ((1.0 / b) * log((v0 * r1) / (rt * (vdd - v0)))))) - 273.15)
#define temp_pcb (TEMP(analogRead(TERMISTOR_PCB) * 3.3 / 4096.0, 3435.0, 10000.0, 10000.0, 3.3))
#define temp_mot (analogRead(TERMISTOR_EXT) > 0.95 ? NAN : (TEMP(analogRead(TERMISTOR_EXT) * 3.3 / 4096.0, 3435.0, 10000.0, 10000.0, 3.3)))
#define vdrive_read (analogRead(VSENSE_PIN) * 20.08f / 845)
//* 20.8f/ 21033.75)
// #define ESPHWENC
#define MOTOR
#define FW_NO_WATCHDOG
@ -66,27 +69,32 @@ USBCDC usbserial;
// };
#endif
const int voltage_lpf = 50;
const float max_voltage_limit = 6;
// ESP32HWEncoder encoder =
// ESP32HWEncoder(ENC_A, ENC_B, 4096 / 4); // The Index pin can be omitted
float max_voltage_limit = 0;
#ifdef ESPHWENC
#include "encoders/esp32hwencoder/ESP32HWEncoder.h"
ESP32HWEncoder encoder(ENC_A, ENC_B, 4096 / 4); // The Index pin can be omitted
#else
Encoder encoder(ENC_A, ENC_B, 4096 / 4);
void doA1() { encoder.handleA(); }
void doB1() { encoder.handleB(); }
#endif
MagneticSensorAS5047 encoder_absolute(18);
Encoder encoder(ENC_A, ENC_B, 4096 / 4, 0);
AbsIncCombineSensor abs_inc_sensor(encoder, encoder_absolute);
float encoder_calibration_lut[90];
CalibratedSensor encoder_calibrated(encoder_absolute,
sizeof(encoder_calibration_lut) / sizeof(encoder_calibration_lut[0]),
CalibratedSensor encoder_calibrated(abs_inc_sensor, sizeof(encoder_calibration_lut) / sizeof(encoder_calibration_lut[0]),
encoder_calibration_lut);
// MagneticSensorAS5600 encoder = MagneticSensorAS5600(0x36);
#ifdef MOTOR
struct drv8323s_foc_driver drv8323s;
// BLDCMotor motor = BLDCMotor(100); // 24N22P
HybridStepperMotor motor = HybridStepperMotor(50); //, 3.7, 10, 4.5 / 1000);
#endif
HybridStepperMotor motorHybridStepper = HybridStepperMotor(50); //, 3.7, 10, 4.5 / 1000);
BLDCMotor motorBLDC = BLDCMotor(7, 0.7, 360, 0.15);
FOCMotor *motor = NULL;
// BLDCMotor motor = BLDCMotor(7);
// BLDCDriver3PWM driver = BLDCDriver3PWM(16, 5, 17, 4);
void read_i2c(uint8_t addr, uint8_t reg, uint8_t *buf, uint8_t len) {
Wire.beginTransmission(addr);
@ -130,18 +138,25 @@ void mutexed_state_sync(UdralServoState *const state, const float hz) {
xSemaphoreTake(mutex, portMAX_DELAY);
if (!init_done) {
init_done = true;
state->pid_position.value.count = 3;
state->pid_position.value.elements[0] = motor.P_angle.P;
state->pid_position.value.elements[1] = motor.P_angle.I;
state->pid_position.value.elements[2] = motor.P_angle.D;
motor = state->motor_type == MOTOR_TYPE_HYBRID_STEPPER ? (FOCMotor *)&motorHybridStepper : (FOCMotor *)&motorBLDC;
state->max_voltage.value.count = 2;
state->max_voltage.value.elements[0] = 0.01; /* max voltage*/
state->max_voltage.value.elements[1] = 0.01; /* aligning voltage */
state->pid_position.value.count = 6;
state->pid_position.value.elements[0] = motor->P_angle.P;
state->pid_position.value.elements[1] = motor->P_angle.I;
state->pid_position.value.elements[2] = motor->P_angle.D;
state->pid_position.value.elements[3] = motor->LPF_angle.Tf;
state->pid_position.value.elements[4] = motor->P_angle.output_ramp;
state->pid_position.value.elements[5] = motor->P_angle.limit;
state->pid_velocity.value.count = 7;
state->pid_velocity.value.elements[0] = motor.PID_velocity.P;
state->pid_velocity.value.elements[1] = motor.PID_velocity.I;
state->pid_velocity.value.elements[2] = motor.PID_velocity.D;
state->pid_velocity.value.elements[3] = motor.LPF_velocity.Tf;
state->pid_velocity.value.elements[4] = motor.PID_velocity.output_ramp;
state->pid_velocity.value.elements[5] = motor.PID_velocity.limit;
motor.motion_downsample = state->pid_velocity.value.elements[6] = 0;
state->pid_velocity.value.elements[0] = motor->PID_velocity.P;
state->pid_velocity.value.elements[1] = motor->PID_velocity.I;
state->pid_velocity.value.elements[2] = motor->PID_velocity.D;
state->pid_velocity.value.elements[3] = motor->LPF_velocity.Tf;
state->pid_velocity.value.elements[4] = motor->PID_velocity.output_ramp;
state->pid_velocity.value.elements[5] = motor->PID_velocity.limit;
state->pid_velocity.value.elements[6] = motor->motion_downsample;
}
servo_state.target_force = state->target_force;
servo_state.target_acceleration = state->target_acceleration;
@ -167,12 +182,11 @@ void mutexed_state_sync(UdralServoState *const state, const float hz) {
xSemaphoreGive(mutex);
}
TaskHandle_t taskFocHandle;
void foc_task(void *parameter);
TaskHandle_t taskCommHandle;
void comm_task(void *parameter) { udral_loop(mutexed_state_sync); }
void doA1() { encoder.handleA(); }
void doB1() { encoder.handleB(); }
void setup() {
pinMode(LED_PIN, OUTPUT);
mutex = xSemaphoreCreateMutex();
@ -184,13 +198,6 @@ void setup() {
#else
Serial.begin(460800, SERIAL_8N1, 44, 43);
#endif
digitalWrite(LED_PIN, 0); // enable
delay(500);
digitalWrite(LED_PIN, 1); // disable
delay(100);
Serial.println("Start");
delay(1000);
pinMode(SPI_DRV_SC, OUTPUT);
@ -206,77 +213,35 @@ void setup() {
digitalWrite(CAL_PIN, 0); // enable
pinMode(SPI_MISO, INPUT_PULLUP);
SPI.begin(SPI_CLK, SPI_MISO, SPI_MOSI, SPI_DRV_SC);
spi_dev.begin(SPI_CLK, SPI_MISO, SPI_MOSI);
spi_drv.begin(SPI_DRV_CLK, SPI_DRV_MISO, SPI_DRV_MOSI, SPI_DRV_SC);
// SPI.setFrequency(100000);
// initialise magnetic sensor hardware
encoder.pullup = Pullup::USE_INTERN;
encoder.init();
#ifndef ESPHWENC
encoder.enableInterrupts(doA1, doB1);
#endif
encoder_absolute.init(&spi_dev);
abs_inc_sensor.init();
drv8323s_init(&drv8323s, INHA, INHB, INHC, SPI_DRV_SC, DRVEN,&spi_drv); //&spi_drv);
motorHybridStepper.linkSensor(&encoder_absolute);
motorHybridStepper.linkDriver(drv8323s.focdriver);
motorBLDC.linkSensor(&encoder_absolute);
motorBLDC.linkDriver(drv8323s.focdriver);
Serial.printf("offset: %f\nvalue: %d", abs_inc_sensor.offset, abs_inc_sensor.getAngle());
#ifdef MOTOR
SimpleFOCDebug::enable(&Serial);
drv8323s_init(&drv8323s, INHA, INHB, INHC, SPI_DRV_SC, DRVEN, &spi_dev);
digitalWrite(INLABC, 1); // enable
// driver.init(&SPI);
// status();
motor.linkSensor(&encoder_calibrated);
motor.linkDriver(drv8323s.focdriver);
// motor.foc_modulation = FOCModulationType::SinePWM;
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
motor.voltage_sensor_align = 4;
motor.voltage_limit = max_voltage_limit;
// motor.controller = MotionControlType::velocity_openloop;
// motor.controller = MotionControlType::velocity;
motor.controller = MotionControlType::torque;
motor.torque_controller = TorqueControlType::voltage;
motor.useMonitoring(Serial);
drv8323s.focdriver->voltage_power_supply = vdrive_read;
motor.init();
delay(1000);
static Preferences pref;
pref.begin("simpleFOC");
// set voltage to run calibration
encoder_calibrated.voltage_calibration = 3;
encoder_calibrated.init();
// Running calibration
const char *encoder_calibration_lut_str = "enc_cal_lut";
const char *zero_electric_angle_str = "zero_el_angle";
const char *sensor_direction_str = "enc_dir_str";
const int settle_time_ms = 150;
if (!pref.isKey(encoder_calibration_lut_str) ||
pref.getBytesLength(encoder_calibration_lut_str) != sizeof(encoder_calibration_lut)) {
encoder_calibrated.calibrate(motor, settle_time_ms);
pref.putBytes(encoder_calibration_lut_str, &encoder_calibration_lut[0], sizeof(encoder_calibration_lut));
pref.putFloat(zero_electric_angle_str, motor.zero_electric_angle);
pref.putInt(sensor_direction_str, (int)motor.sensor_direction);
} else {
pref.getBytes(encoder_calibration_lut_str, &encoder_calibration_lut[0], sizeof(encoder_calibration_lut));
Serial.println("Skipping calibration");
}
if (!pref.isKey(zero_electric_angle_str)) {
motor.initFOC();
pref.putFloat(zero_electric_angle_str, motor.zero_electric_angle);
pref.putInt(sensor_direction_str, (int)motor.sensor_direction);
} else {
motor.zero_electric_angle = pref.getFloat(zero_electric_angle_str);
motor.sensor_direction = (Direction)pref.getInt(sensor_direction_str);
motor.initFOC();
}
pref.end();
motor.move(0);
digitalWrite(INLABC, 0); // enable
#endif
digitalWrite(LED_PIN, 1); // disable
delay(100);
digitalWrite(LED_PIN, 0); // enable
delay(400);
digitalWrite(LED_PIN, 1); // disable
delay(4000);
xTaskCreatePinnedToCore(&comm_task, // Function name of the task
"comm", // Name of the task (e.g. for debugging)
65536, // Stack size (bytes)
@ -287,104 +252,207 @@ void setup() {
);
// esp_task_wdt_init(WDT_TIMEOUT_s, true); // enable panic so ESP32 restarts
// esp_task_wdt_add(NULL); // add current thread to WDT watch
}
int i = 0;
void loop() {
#ifdef MOTOR
while (!init_done) {
delay(10);
}
bool armed = false;
xTaskCreatePinnedToCore(&foc_task, // Function name of the task
"foc", // Name of the task (e.g. for debugging)
65536, // Stack size (bytes)
NULL, // Parameter to pass
10, // Task priority
&taskFocHandle, // Assign task handle
1 // Run on the non-Arduino (1) core
);
}
bool init_motor() {
#ifndef MOTOR
return false;
#endif
if (motor == NULL) {
return false;
}
static bool is_init = false;
if (!is_init) {
if (motor->voltage_limit <= 0 || motor->voltage_sensor_align <= 0) {
return false;
}
is_init = true;
} else {
return true;
}
digitalWrite(INLABC, 1); // enable
// driver.init(&SPI);
// status();
// motor->foc_modulation = FOCModulationType::SinePWM;
motor->foc_modulation = FOCModulationType::SpaceVectorPWM;
// motor->controller = MotionControlType::velocity_openloop;
// motor->controller = MotionControlType::velocity;
motor->controller = MotionControlType::torque;
motor->torque_controller = TorqueControlType::voltage;
motor->useMonitoring(Serial);
drv8323s.focdriver->voltage_power_supply = vdrive_read;
motor->init();
delay(1000);
static Preferences pref;
pref.begin("simpleFOC");
// set voltage to run calibration
encoder_calibrated.voltage_calibration = motor->voltage_sensor_align;
encoder_calibrated.init();
// Running calibration
const char *encoder_calibration_lut_str = "enc_cal_lut";
const char *zero_electric_angle_str = "zero_el_angle";
const char *sensor_direction_str = "enc_dir_str";
const int settle_time_ms = 150;
const bool calibration_saveable = motor->sensor == &encoder_calibrated;
if (calibration_saveable &&
(!pref.isKey(encoder_calibration_lut_str) || pref.getBytesLength(encoder_calibration_lut_str) != sizeof(encoder_calibration_lut))) {
encoder_calibrated.calibrate(*motor, settle_time_ms);
pref.putBytes(encoder_calibration_lut_str, &encoder_calibration_lut[0], sizeof(encoder_calibration_lut));
pref.putFloat(zero_electric_angle_str, motor->zero_electric_angle);
pref.putInt(sensor_direction_str, (int)motor->sensor_direction);
} else {
pref.getBytes(encoder_calibration_lut_str, &encoder_calibration_lut[0], sizeof(encoder_calibration_lut));
Serial.println("Skipping calibration");
}
if (pref.isKey(zero_electric_angle_str) && calibration_saveable) {
motor->zero_electric_angle = pref.getFloat(zero_electric_angle_str);
motor->sensor_direction = (Direction)pref.getInt(sensor_direction_str);
motor->initFOC();
} else {
motor->initFOC();
if (calibration_saveable) {
pref.putFloat(zero_electric_angle_str, motor->zero_electric_angle);
pref.putInt(sensor_direction_str, (int)motor->sensor_direction);
}
}
pref.end();
motor->move(0);
digitalWrite(INLABC, 0); // enable
return true;
}
int i = 0;
void loop() {}
void foc_task_loop() {
if(motor == NULL) {
delay(10);
return;
}
bool armed = false;
/* adc reading */
drv8323s.focdriver->voltage_power_supply = vdrive_read;
const float curr_pcb_temp_kelvin = temp_pcb + 273.15f;
const float curr_mot_temp_kelvin = temp_mot + 273.15f;
xSemaphoreTake(mutex, portMAX_DELAY);
armed = servo_state.arming.armed;
max_voltage_limit = servo_state.max_voltage.value.count <= 0 ? 0 : servo_state.max_voltage.value.elements[0];
motor->voltage_sensor_align = servo_state.max_voltage.value.count <= 1 ? 0 : servo_state.max_voltage.value.elements[1];
float target;
if (!std::isnan(servo_state.target_position)) {
if (motor.controller != MotionControlType::angle) {
motor.controller = MotionControlType::angle;
Serial.println("MotionControlType::angle");
auto target_control_type = (is_openloop(servo_state.motor_type) ? MotionControlType::angle_openloop : MotionControlType::angle);
if (motor->controller != MotionControlType::angle) {
motor->controller = MotionControlType::angle;
Serial.printf("MotionControlType::angle%s\n", is_openloop(servo_state.motor_type) ? "_openloop" : "");
}
target = servo_state.target_position;
motor.velocity_limit = std::isnan(servo_state.target_velocity) ? 10000 : servo_state.target_velocity;
motor.voltage_limit = std::isnan(servo_state.target_force)
? max_voltage_limit
: std::min(max_voltage_limit, std::abs(servo_state.target_force));
motor->velocity_limit = std::isnan(servo_state.target_velocity) ? 10000 : servo_state.target_velocity;
motor->voltage_limit =
std::isnan(servo_state.target_force) ? max_voltage_limit : std::min(max_voltage_limit, std::abs(servo_state.target_force));
} else if (!std::isnan(servo_state.target_velocity)) {
if (motor.controller != MotionControlType::velocity) {
motor.controller = MotionControlType::velocity;
Serial.println("MotionControlType::velocity");
auto target_control_type = (is_openloop(servo_state.motor_type) ? MotionControlType::velocity_openloop : MotionControlType::velocity);
if (motor->controller != target_control_type) {
motor->controller = target_control_type;
Serial.printf("MotionControlType::velocity%s\n", is_openloop(servo_state.motor_type) ? "_openloop" : "");
}
target = servo_state.target_velocity;
motor.voltage_limit = std::isnan(servo_state.target_force)
? max_voltage_limit
: std::min(max_voltage_limit, std::abs(servo_state.target_force));
motor->voltage_limit =
std::isnan(servo_state.target_force) ? max_voltage_limit : std::min(max_voltage_limit, std::abs(servo_state.target_force));
} else {
motor.voltage_limit = std::isnan(servo_state.target_force)
? max_voltage_limit
: std::min(max_voltage_limit, std::abs(servo_state.target_force));
target = servo_state.target_force;
if (motor.controller != MotionControlType::torque) {
motor.controller = MotionControlType::torque;
if (is_openloop(servo_state.motor_type)) {
armed = false;
}
motor->voltage_limit =
std::isnan(servo_state.target_force) ? max_voltage_limit : std::min(max_voltage_limit, std::abs(servo_state.target_force));
target = std::isnan(servo_state.target_force) ? 0 : servo_state.target_force;
if (motor->controller != MotionControlType::torque) {
motor->controller = MotionControlType::torque;
Serial.printf("MotionControlType::torque %f\n", target);
}
}
servo_state.controller_temperature = curr_pcb_temp_kelvin;
servo_state.motor_temperature = NAN;
servo_state.motor_temperature = curr_mot_temp_kelvin;
float curr_angle = encoder_calibrated.getAngle();
float curr_angle = motor->sensor->getAngle();
servo_state.curr_position = curr_angle;
servo_state.curr_force = motor.voltage.d;
servo_state.curr_force = motor->voltage.d;
servo_state.vcc_volts = drv8323s.focdriver->voltage_power_supply;
servo_state.current = motor.current.d;
servo_state.current = motor->current.d;
motor.PID_velocity.P = servo_state.pid_velocity.value.count <= 0 ? 0 : servo_state.pid_velocity.value.elements[0];
motor.PID_velocity.I = servo_state.pid_velocity.value.count <= 1 ? 0 : servo_state.pid_velocity.value.elements[1];
motor.PID_velocity.D = servo_state.pid_velocity.value.count <= 2 ? 0 : servo_state.pid_velocity.value.elements[2];
motor.LPF_velocity.Tf = servo_state.pid_velocity.value.count <= 3 ? 0.01 : servo_state.pid_velocity.value.elements[3];
motor.PID_velocity.output_ramp =
servo_state.pid_velocity.value.count <= 4 ? 300 : servo_state.pid_velocity.value.elements[4];
motor.PID_velocity.limit =
servo_state.pid_velocity.value.count <= 5 ? 1000 : servo_state.pid_velocity.value.elements[5];
motor.motion_downsample = servo_state.pid_velocity.value.count <= 6 ? 0 : servo_state.pid_velocity.value.elements[6];
motor->PID_velocity.P = servo_state.pid_velocity.value.count <= 0 ? 0 : servo_state.pid_velocity.value.elements[0];
motor->PID_velocity.I = servo_state.pid_velocity.value.count <= 1 ? 0 : servo_state.pid_velocity.value.elements[1];
motor->PID_velocity.D = servo_state.pid_velocity.value.count <= 2 ? 0 : servo_state.pid_velocity.value.elements[2];
motor->LPF_velocity.Tf = servo_state.pid_velocity.value.count <= 3 ? 0.01 : servo_state.pid_velocity.value.elements[3];
motor->PID_velocity.output_ramp = servo_state.pid_velocity.value.count <= 4 ? 300 : servo_state.pid_velocity.value.elements[4];
motor->PID_velocity.limit = servo_state.pid_velocity.value.count <= 5 ? 1000 : servo_state.pid_velocity.value.elements[5];
motor->motion_downsample = servo_state.pid_velocity.value.count <= 6 ? 0 : servo_state.pid_velocity.value.elements[6];
motor.P_angle.P = servo_state.pid_position.value.count <= 0 ? 0 : servo_state.pid_position.value.elements[0];
motor.P_angle.I = servo_state.pid_position.value.count <= 1 ? 0 : servo_state.pid_position.value.elements[1];
motor.P_angle.D = servo_state.pid_position.value.count <= 2 ? 0 : servo_state.pid_position.value.elements[2];
// motor.P_angle.output_ramp = 10000; // default 1e6 rad/s^2
motor->P_angle.P = servo_state.pid_position.value.count <= 0 ? 0 : servo_state.pid_position.value.elements[0];
motor->P_angle.I = servo_state.pid_position.value.count <= 1 ? 0 : servo_state.pid_position.value.elements[1];
motor->P_angle.D = servo_state.pid_position.value.count <= 2 ? 0 : servo_state.pid_position.value.elements[2];
motor->LPF_angle.Tf = servo_state.pid_position.value.count <= 3 ? 0 : servo_state.pid_position.value.elements[3];
motor->P_angle.output_ramp = servo_state.pid_position.value.count <= 4 ? 1e6 : servo_state.pid_position.value.elements[4];
motor->P_angle.limit = servo_state.pid_position.value.count <= 5 ? 1000 : servo_state.pid_position.value.elements[5];
// motor->P_angle.output_ramp = 10000; // default 1e6 rad/s^2
/* angle low pass filtering, use only for very noisy position sensors - try to avoid and keep the values very small */
motor.LPF_angle.Tf = 0; // default 0[=disabled]
// setting the limits
xSemaphoreGive(mutex);
if (init_motor()) {
if (!armed) {
if (motor.enabled) {
motor.move(0);
motor.disable();
if (motor->enabled) {
motor->move(0);
motor->disable();
digitalWrite(INLABC, 0);
digitalWrite(LED_PIN, HIGH);
}
} else {
if (!motor.enabled) {
if (!motor->enabled) {
digitalWrite(INLABC, 1);
motor.enable();
motor->enable();
digitalWrite(LED_PIN, LOW);
}
motor.move(target);
motor->move(target);
}
motor->loopFOC();
} else {
digitalWrite(LED_PIN, HIGH);
delay(10);
//if(motor && motor->sensor) {
// motor->sensor->update();
//}
}
}
void foc_task(void *parameter) {
while (true) {
foc_task_loop();
}
digitalWrite(LED_PIN, armed ? LOW : HIGH);
motor.loopFOC();
#else
encoder.update(); // optional: Update manually if not using loopfoc()
#endif
}

35
fw/src/pin_def_v5.h Normal file
View File

@ -0,0 +1,35 @@
#pragma once
#define ENC_A 11
#define ENC_B 8
#define SPI_ACC_nCS 0
#define SPI_ENC_nCS 18
#define SPI_CLK 40
#define SPI_MISO 38
#define SPI_MOSI 39
#define DRV_nFAULT 15
#define DRVEN 16
#define TERMISTOR_PCB 3
#define TERMISTOR_EXT 9
#define SOA 1
#define SOB 2
#define SOC 10
#define INHA 14
#define INHB 12
#define INHC 13
#define INLABC 46
#define CAN_TX 6
#define CAN_RX 7
#define SPI_DRV_MISO 45
#define SPI_DRV_MOSI 48
#define SPI_DRV_CLK 47
#define SPI_DRV_SC 21
#define LED_PIN 42
#define VSENSE_PIN 5
#define CAL_PIN 17

67
fw/src/ringbuf.hpp Normal file
View File

@ -0,0 +1,67 @@
/*
*
* Copyright (c) [2022] by InvenSense, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "ICM42670P.h"
// Instantiate an ICM42670 with SPI interface and CS on pin 8
ICM42670 IMU(SPI,8);
void setup() {
int ret;
Serial.begin(115200);
while(!Serial) {}
// Initializing the ICM42670
ret = IMU.begin();
if (ret != 0) {
Serial.print("ICM42670 initialization failed: ");
Serial.println(ret);
while(1);
}
// Accel ODR = 100 Hz and Full Scale Range = 16G
IMU.startAccel(100,16);
// Gyro ODR = 100 Hz and Full Scale Range = 2000 dps
IMU.startGyro(100,2000);
// Wait IMU to start
delay(100);
}
void loop() {
inv_imu_sensor_event_t imu_event;
// Get last event
IMU.getDataFromRegisters(imu_event);
// Format data for Serial Plotter
Serial.print("AccelX:");
Serial.println(imu_event.accel[0]);
Serial.print("AccelY:");
Serial.println(imu_event.accel[1]);
Serial.print("AccelZ:");
Serial.println(imu_event.accel[2]);
Serial.print("GyroX:");
Serial.println(imu_event.gyro[0]);
Serial.print("GyroY:");
Serial.println(imu_event.gyro[1]);
Serial.print("GyroZ:");
Serial.println(imu_event.gyro[2]);
Serial.print("Temperature:");
Serial.println(imu_event.temperature);
// Run @ ODR 100Hz
delay(10);
}

View File

@ -16,7 +16,7 @@
#define NUNAVUT_ASSERT(x) assert(x)
#include "canard.h"
#include "esp32-hal.h"
#include "pin_def.h"
#include "pin_def_v5.h"
// #include "socketcan.h"
#include <assert.h>
@ -60,6 +60,17 @@ const unsigned int hz = 50;
/// We keep the state of the application here. Feel free to use static variables
/// instead if desired.
enum motor_type_t {
MOTOR_TYPE_BLDC_OPENLOOP = 0,
MOTOR_TYPE_BLDC = 1,
MOTOR_TYPE_HYBRID_STEPPER_OPENLOOP = 2,
MOTOR_TYPE_HYBRID_STEPPER = 3,
};
bool is_openloop(const enum motor_type_t t) {
return !(((int)t)&0b1);
}
struct UdralServoState {
/// Whether the servo is supposed to actuate the load or to stay idle (safe
/// low-power mode).
@ -93,6 +104,9 @@ struct UdralServoState {
uavcan_primitive_array_Real32_1_0 pid_position;
uavcan_primitive_array_Real32_1_0 pid_velocity;
uavcan_primitive_array_Real32_1_0 max_voltage;
enum motor_type_t motor_type;
};
};
@ -143,6 +157,8 @@ struct UdralServoInternalState {
state_sync_f user_state_sync_f;
};
static struct UdralServoInternalState state;
/// This flag is raised when the node is requested to restart.
static volatile bool g_restart_required = false;
@ -194,18 +210,16 @@ static CanardPortID getSubjectID(const SubjectRole role, const char *const port_
}
static void send(struct UdralServoInternalState *const state, const CanardMicrosecond tx_deadline_usec,
const CanardTransferMetadata *const metadata, const size_t payload_size,
const void *const payload_data, const CanardMicrosecond now_usec) {
const CanardTransferMetadata *const metadata, const size_t payload_size, const void *const payload_data,
const CanardMicrosecond now_usec) {
for (uint8_t ifidx = 0; ifidx < CAN_REDUNDANCY_FACTOR; ifidx++) {
const struct CanardPayload payload = {.size = payload_size, .data = payload_data};
(void)canardTxPush(&state->canard_tx_queues[ifidx], &state->canard, tx_deadline_usec, metadata, payload, now_usec,
NULL);
(void)canardTxPush(&state->canard_tx_queues[ifidx], &state->canard, tx_deadline_usec, metadata, payload, now_usec, NULL);
}
}
static void sendResponse(struct UdralServoInternalState *const state,
const struct CanardRxTransfer *const original_request_transfer, const size_t payload_size,
const void *const payload_data, const CanardMicrosecond now_usec) {
static void sendResponse(struct UdralServoInternalState *const state, const struct CanardRxTransfer *const original_request_transfer,
const size_t payload_size, const void *const payload_data, const CanardMicrosecond now_usec) {
CanardTransferMetadata meta = original_request_transfer->metadata;
meta.transfer_kind = CanardTransferKindResponse;
send(state, original_request_transfer->timestamp_usec + MEGA, &meta, payload_size, payload_data, now_usec);
@ -219,8 +233,7 @@ static void handleFastLoop(struct UdralServoInternalState *const state, const Ca
// snprintf(buf, sizeof(buf),
Serial.printf("\rp=%.3f m v=%.3f m/s a=%.3f (m/s)^2 F=%.3f N \r", (double)state->servo.target_position,
(double)state->servo.target_velocity, (double)state->servo.target_acceleration,
(double)state->servo.target_force);
(double)state->servo.target_velocity, (double)state->servo.target_acceleration, (double)state->servo.target_force);
} else {
// fprintf(stderr, "\rDISARMED \r");
}
@ -231,15 +244,14 @@ static void handleFastLoop(struct UdralServoInternalState *const state, const Ca
// Publish feedback if the subject is enabled and the node is non-anonymous.
if (!anonymous && (state->port_id.pub.servo_feedback <= CANARD_SUBJECT_ID_MAX)) {
reg_udral_service_actuator_common_Feedback_0_1 msg = {0};
msg.heartbeat.readiness.value = state->servo.arming.armed ? reg_udral_service_common_Readiness_0_1_ENGAGED
: reg_udral_service_common_Readiness_0_1_STANDBY;
msg.heartbeat.readiness.value =
state->servo.arming.armed ? reg_udral_service_common_Readiness_0_1_ENGAGED : reg_udral_service_common_Readiness_0_1_STANDBY;
// If there are any hardware or configuration issues, report them here:
msg.heartbeat.health.value = uavcan_node_Health_1_0_NOMINAL;
// Serialize and publish the message:
uint8_t serialized[reg_udral_service_actuator_common_Feedback_0_1_SERIALIZATION_BUFFER_SIZE_BYTES_];
size_t serialized_size = sizeof(serialized);
const int8_t err =
reg_udral_service_actuator_common_Feedback_0_1_serialize_(&msg, &serialized[0], &serialized_size);
const int8_t err = reg_udral_service_actuator_common_Feedback_0_1_serialize_(&msg, &serialized[0], &serialized_size);
assert(err >= 0);
if (err >= 0) {
const CanardTransferMetadata transfer = {
@ -266,8 +278,7 @@ static void handleFastLoop(struct UdralServoInternalState *const state, const Ca
// Serialize and publish the message:
uint8_t serialized[reg_udral_physics_dynamics_rotation_PlanarTs_0_1_SERIALIZATION_BUFFER_SIZE_BYTES_];
size_t serialized_size = sizeof(serialized);
const int8_t err =
reg_udral_physics_dynamics_rotation_PlanarTs_0_1_serialize_(&msg, &serialized[0], &serialized_size);
const int8_t err = reg_udral_physics_dynamics_rotation_PlanarTs_0_1_serialize_(&msg, &serialized[0], &serialized_size);
if (err >= 0) {
const CanardTransferMetadata transfer = {
.priority = CanardPriorityHigh,
@ -398,8 +409,8 @@ static void handle1HzLoop(struct UdralServoInternalState *const state, const Can
}
// Disarm automatically if the arming subject has not been updated in a while.
if (state->servo.arming.armed && ((now_usec - state->servo.arming.last_update_at) >
(uint64_t)(reg_udral_service_actuator_common___0_1_CONTROL_TIMEOUT * MEGA))) {
if (state->servo.arming.armed &&
((now_usec - state->servo.arming.last_update_at) > (uint64_t)(reg_udral_service_actuator_common___0_1_CONTROL_TIMEOUT * MEGA))) {
state->servo.arming.armed = false;
puts("Disarmed by timeout ");
}
@ -517,16 +528,14 @@ static void processMessagePlugAndPlayNodeIDAllocation(struct UdralServoInternalS
reg.natural16.value.count = 1;
registerWrite("uavcan.node.id", &reg);
// We no longer need the subscriber, drop it to free up the resources (both memory and CPU time).
(void)canardRxUnsubscribe(&state->canard, CanardTransferKindMessage,
uavcan_pnp_NodeIDAllocationData_1_0_FIXED_PORT_ID_);
(void)canardRxUnsubscribe(&state->canard, CanardTransferKindMessage, uavcan_pnp_NodeIDAllocationData_1_0_FIXED_PORT_ID_);
} else {
Serial.println("Ignoring processMessagePlugAndPlayNodeIDAllocation response");
}
// Otherwise, ignore it: either it is a request from another node or it is a response to another node.
}
static uavcan_node_ExecuteCommand_Response_1_1 processRequestExecuteCommand(
const uavcan_node_ExecuteCommand_Request_1_1 *req) {
static uavcan_node_ExecuteCommand_Response_1_1 processRequestExecuteCommand(const uavcan_node_ExecuteCommand_Request_1_1 *req) {
uavcan_node_ExecuteCommand_Response_1_1 resp = {0};
switch (req->command) {
case uavcan_node_ExecuteCommand_Request_1_1_COMMAND_BEGIN_SOFTWARE_UPDATE: {
@ -590,10 +599,43 @@ static uavcan_register_Access_Response_1_0 processRequestRegisterAccess(const ua
name[req->name.name.count] = '\0';
uavcan_register_Access_Response_1_0 resp = {0};
// Serial.println("processRequestRegisterAccess");
// Serial.print("name: ");
// Serial.println((char *)&req->name.name);
Serial.printf("processRequestRegisterAccess name: %s\n\r", (char *)&req->name.name);
if (strcmp((char*)&req->name.name.elements[0], "reg.motor_type") == 0) {
uavcan_register_Value_1_0_select_string_(&resp.value);
if (!uavcan_register_Value_1_0_is_string_(&req->value)) {
if (state.servo.motor_type == MOTOR_TYPE_HYBRID_STEPPER) {
strcpy((char*)&resp.value._string.value.elements[0], "HybridStepper");
} else if (state.servo.motor_type == MOTOR_TYPE_HYBRID_STEPPER_OPENLOOP) {
strcpy((char*)&resp.value._string.value.elements[0], "HybridStepper_openloop");
} else if (state.servo.motor_type == MOTOR_TYPE_BLDC) {
strcpy((char*)&resp.value._string.value.elements[0], "BLDC");
} else {
strcpy((char*)&resp.value._string.value.elements[0], "BLDC_openloop");
}
resp.value._string.value.count = strlen((char*)&resp.value._string.value.elements[0]);
//Serial.printf("resp reg.motor_type: %s (%d)\n\r",(char*)&resp.value._string.value.elements[0], resp.value._string.value.count);
Serial.printf("req reg.motor_type: %s (%d)\n\r",(char*)&req->value._string.value.elements[0], req->value._string.value.count);
registerWrite("reg.motor_type", &resp.value);
}
if (strcmp((char*)&resp.value._string.value.elements[0], "HybridStepper") == 0) {
state.servo.motor_type = MOTOR_TYPE_HYBRID_STEPPER;
strcpy((char*)&resp.value._string.value.elements[0], "HybridStepper");
} else if (strcmp((char*)&resp.value._string.value.elements[0], "HybridStepper_openloop") == 0) {
state.servo.motor_type = MOTOR_TYPE_HYBRID_STEPPER_OPENLOOP;
strcpy((char*)&resp.value._string.value.elements[0], "HybridStepper_openloop");
} else if (strcmp((char*)&resp.value._string.value.elements[0], "BLDC") == 0) {
state.servo.motor_type = MOTOR_TYPE_BLDC;
strcpy((char*)&resp.value._string.value.elements[0], "BLDC");
} else {
state.servo.motor_type = MOTOR_TYPE_BLDC_OPENLOOP;
strcpy((char*)&resp.value._string.value.elements[0], "BLDC_openloop");
}
resp.value._string.value.count = strlen((char*)&resp.value._string.value.elements[0]);
registerWrite("reg.motor_type", &resp.value);
} else {
// If we're asked to write a new value, do it now:
if (!uavcan_register_Value_1_0_is_empty_(&req->value)) {
uavcan_register_Value_1_0_select_empty_(&resp.value);
@ -608,7 +650,7 @@ static uavcan_register_Access_Response_1_0 processRequestRegisterAccess(const ua
// The client will determine if the write was successful or not by comparing the request value with response.
uavcan_register_Value_1_0_select_empty_(&resp.value);
registerRead(&name[0], &resp.value);
}
// Currently, all registers we implement are mutable and persistent. This is an acceptable simplification,
// but more advanced implementations will need to differentiate between them to support advanced features like
// exposing internal states via registers, perfcounters, etc.
@ -645,14 +687,13 @@ static uavcan_node_GetInfo_Response_1_0 processRequestNodeGetInfo() {
return resp;
}
static void processReceivedTransfer(struct UdralServoInternalState *const state,
const struct CanardRxTransfer *const transfer, const CanardMicrosecond now_usec) {
static void processReceivedTransfer(struct UdralServoInternalState *const state, const struct CanardRxTransfer *const transfer,
const CanardMicrosecond now_usec) {
if (transfer->metadata.transfer_kind == CanardTransferKindMessage) {
size_t size = transfer->payload.size;
if (transfer->metadata.port_id == state->port_id.sub.servo_setpoint) {
reg_udral_physics_dynamics_rotation_Planar_0_1 msg = {0};
if (reg_udral_physics_dynamics_rotation_Planar_0_1_deserialize_(&msg, (uint8_t *)transfer->payload.data, &size) >=
0) {
if (reg_udral_physics_dynamics_rotation_Planar_0_1_deserialize_(&msg, (uint8_t *)transfer->payload.data, &size) >= 0) {
processMessageServoSetpoint(state, &msg);
}
} else if (transfer->metadata.port_id == state->port_id.sub.servo_readiness) {
@ -739,9 +780,7 @@ static void canardDeallocate(void *const user_reference, const size_t amount, vo
int udral_loop(state_sync_f servo_state_sync_f) {
srand(micros());
struct UdralServoInternalState state{
.user_state_sync_f = servo_state_sync_f,
};
state.user_state_sync_f = servo_state_sync_f;
// A simple application like a servo node typically does not require more than 20 KiB of heap and 4 KiB of stack.
// For the background and related theory refer to the following resources:
// - https://github.com/OpenCyphal/libcanard/blob/master/README.md
@ -767,9 +806,8 @@ int udral_loop(state_sync_f servo_state_sync_f) {
val.natural16.value.elements[0] = UINT16_MAX; // This means undefined (anonymous), per Specification/libcanard.
registerRead("uavcan.node.id", &val); // The names of the standard registers are regulated by the Specification.
assert(uavcan_register_Value_1_0_is_natural16_(&val) && (val.natural16.value.count == 1));
state.canard.node_id = (val.natural16.value.elements[0] > CANARD_NODE_ID_MAX)
? CANARD_NODE_ID_UNSET
: (CanardNodeID)val.natural16.value.elements[0];
state.canard.node_id =
(val.natural16.value.elements[0] > CANARD_NODE_ID_MAX) ? CANARD_NODE_ID_UNSET : (CanardNodeID)val.natural16.value.elements[0];
// The description register is optional but recommended because it helps constructing/maintaining large networks.
// It simply keeps a human-readable description of the node that should be empty by default.
@ -791,6 +829,12 @@ int udral_loop(state_sync_f servo_state_sync_f) {
val._string.value.count = strlen((const char *)val._string.value.elements);
registerWrite("reg.udral.service.actuator.servo", &val);
uavcan_register_Access_Request_1_0 req;
strcpy((char*)&req.name.name.elements[0], "reg.motor_type");
req.name.name.count = strlen((char*)&req.name.name.elements[0]);
uavcan_register_Value_1_0_select_empty_(&req.value);
processRequestRegisterAccess(&req);
// PID
state.user_state_sync_f(&state.servo, hz);
@ -820,6 +864,22 @@ int udral_loop(state_sync_f servo_state_sync_f) {
}
state.servo.pid_velocity = val.real32;
uavcan_register_Value_1_0_select_real32_(&val);
val.real32 = state.servo.max_voltage;
registerRead("reg.max_voltage", &val);
Serial.printf("reg.max_voltage count %d %d\n\r", state.servo.max_voltage.value.count, val.real32.value.count);
if (!uavcan_register_Value_1_0_is_real32_(&val) || val.real32.value.count < state.servo.max_voltage.value.count) {
for (int i = 0; i < uavcan_register_Value_1_0_is_real32_(&val) ? val.real32.value.count : 0; i += 1) {
state.servo.max_voltage.value.elements[i] = val.real32.value.elements[i];
}
uavcan_register_Value_1_0_select_real32_(&val);
val.real32 = state.servo.max_voltage;
registerWrite("reg.max_voltage", &val);
}
state.servo.max_voltage = val.real32;
// The description register is optional but recommended because it helps constructing/maintaining large networks.
// It simply keeps a human-readable description of the node that should be empty by default.
// Configure the transport by reading the appropriate standard registers.
uavcan_register_Value_1_0_select_natural16_(&val);
val.natural16.value.count = 1;
@ -841,24 +901,18 @@ int udral_loop(state_sync_f servo_state_sync_f) {
// As follows from the Specification, the register group name prefix can be arbitrary; here we just use "servo".
// Publications:
state.port_id.pub.servo_feedback = // High-rate status information: all good or not, engaged or sleeping.
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.feedback",
reg_udral_service_actuator_common_Feedback_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.feedback", reg_udral_service_actuator_common_Feedback_0_1_FULL_NAME_AND_VERSION_);
state.port_id.pub.servo_status = // A low-rate high-level status overview: temperatures, fault flags, errors.
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.status",
reg_udral_service_actuator_common_Status_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.status", reg_udral_service_actuator_common_Status_0_1_FULL_NAME_AND_VERSION_);
state.port_id.pub.servo_power = // Electric power input measurements (voltage and current).
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.power",
reg_udral_physics_electricity_PowerTs_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.power", reg_udral_physics_electricity_PowerTs_0_1_FULL_NAME_AND_VERSION_);
state.port_id.pub.servo_dynamics = // Position/speed/acceleration/force feedback.
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.dynamics",
reg_udral_physics_dynamics_rotation_PlanarTs_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_PUBLISHER, "servo.dynamics", reg_udral_physics_dynamics_rotation_PlanarTs_0_1_FULL_NAME_AND_VERSION_);
// Subscriptions:
state.port_id.sub.servo_setpoint = // This message actually commands the servo setpoint with the motion profile.
getSubjectID(SUBJECT_ROLE_SUBSCRIBER, "servo.setpoint",
reg_udral_physics_dynamics_rotation_Planar_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_SUBSCRIBER, "servo.setpoint", reg_udral_physics_dynamics_rotation_Planar_0_1_FULL_NAME_AND_VERSION_);
state.port_id.sub.servo_readiness = // Arming subject: whether to act upon the setpoint or to stay idle.
getSubjectID(SUBJECT_ROLE_SUBSCRIBER, "servo.readiness",
reg_udral_service_common_Readiness_0_1_FULL_NAME_AND_VERSION_);
getSubjectID(SUBJECT_ROLE_SUBSCRIBER, "servo.readiness", reg_udral_service_common_Readiness_0_1_FULL_NAME_AND_VERSION_);
// Set up subject subscriptions and RPC-service servers.
// Message subscriptions:
@ -867,8 +921,7 @@ int udral_loop(state_sync_f servo_state_sync_f) {
static struct CanardRxSubscription rx;
const int8_t res = //
canardRxSubscribe(&state.canard, CanardTransferKindMessage, uavcan_pnp_NodeIDAllocationData_1_0_FIXED_PORT_ID_,
uavcan_pnp_NodeIDAllocationData_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC,
&rx);
uavcan_pnp_NodeIDAllocationData_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx);
if (res < 0) {
return -res;
}
@ -907,8 +960,7 @@ int udral_loop(state_sync_f servo_state_sync_f) {
static struct CanardRxSubscription rx;
const int8_t res = //
canardRxSubscribe(&state.canard, CanardTransferKindRequest, uavcan_node_ExecuteCommand_1_1_FIXED_PORT_ID_,
uavcan_node_ExecuteCommand_Request_1_1_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC,
&rx);
uavcan_node_ExecuteCommand_Request_1_1_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx);
if (res < 0) {
return -res;
}
@ -917,8 +969,7 @@ int udral_loop(state_sync_f servo_state_sync_f) {
static struct CanardRxSubscription rx;
const int8_t res = //
canardRxSubscribe(&state.canard, CanardTransferKindRequest, uavcan_register_Access_1_0_FIXED_PORT_ID_,
uavcan_register_Access_Request_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC,
&rx);
uavcan_register_Access_Request_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx);
if (res < 0) {
return -res;
}
@ -966,12 +1017,11 @@ int udral_loop(state_sync_f servo_state_sync_f) {
// Attempt transmission only if the frame is not yet timed out while waiting in the TX queue.
// Otherwise just drop it and move on to the next one.
if ((tqi->tx_deadline_usec == 0) || (tqi->tx_deadline_usec > now_usec)) {
const struct CanardFrame canard_frame = {
.extended_can_id = tqi->frame.extended_can_id,
const struct CanardFrame canard_frame = {.extended_can_id = tqi->frame.extended_can_id,
.payload = {.size = tqi->frame.payload.size, .data = tqi->frame.payload.data}};
// const int16_t result = socketcanPush(sock[ifidx], &canard_frame, 0); // Non-blocking write attempt.
const int16_t result = esp32twaicanPush(
&canard_frame,
const int16_t result =
esp32twaicanPush(&canard_frame,
0); // Non-blocking write attempt.
// digitalWrite(38, 0); /*enable*/delay(1000); digitalWrite(38, 1); /*disable*/delay(1000);
@ -1014,8 +1064,7 @@ int udral_loop(state_sync_f servo_state_sync_f) {
const int8_t canard_result = canardRxAccept(&state.canard, timestamp_usec, &frame, ifidx, &transfer, NULL);
if (canard_result > 0) {
processReceivedTransfer(&state, &transfer, now_usec);
state.canard.memory.deallocate(state.canard.memory.user_reference, transfer.payload.allocated_size,
transfer.payload.data);
state.canard.memory.deallocate(state.canard.memory.user_reference, transfer.payload.allocated_size, transfer.payload.data);
} else if ((canard_result == 0) || (canard_result == -CANARD_ERROR_OUT_OF_MEMORY)) {
(void)0; // The frame did not complete a transfer so there is nothing to do.
// OOM should never occur if the heap is sized correctly. You can track OOM errors via heap API.

View File

@ -5,7 +5,7 @@
"auto_track_width": false,
"hidden_netclasses": [],
"hidden_nets": [],
"high_contrast_mode": 0,
"high_contrast_mode": 1,
"net_color_mode": 1,
"opacity": {
"images": 0.6,