// This is an AUTO-GENERATED Cyphal DSDL data type implementation. Curious? See https://opencyphal.org. // You shouldn't attempt to edit this file. // // Checking this file under version control is not recommended unless it is used as part of a high-SIL // safety-critical codebase. The typical usage scenario is to generate it as part of the build process. // // To avoid conflicts with definitions given in the source DSDL file, all entities created by the code generator // are named with an underscore at the end, like foo_bar_(). // // Generator: nunavut-2.3.1 (serialization was enabled) // Source file: /home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl // Generated at: 2025-07-17 18:00:19.084689 UTC // Is deprecated: yes // Fixed port-ID: 435 // Full name: uavcan.node.ExecuteCommand // Version: 1.0 // // Platform // python_implementation: CPython // python_version: 3.13.5 // python_release_level: final // python_build: ('main', 'Jun 21 2025 09:35:00') // python_compiler: GCC 15.1.1 20250425 // python_revision: // python_xoptions: {} // runtime_platform: Linux-6.15.6-arch1-1-x86_64-with-glibc2.41 // // Language Options // target_endianness: any // omit_float_serialization_support: False // enable_serialization_asserts: True // enable_override_variable_array_capacity: False // cast_format: (({type}) {value}) // _____ ______ _____ _____ ______ _____ _______ ______ _____ // | __ `| ____| __ `| __ `| ____/ ____| /`|__ __| ____| __ ` // | | | | |__ | |__) | |__) | |__ | | / ` | | | |__ | | | | // | | | | __| | ___/| _ /| __|| | / /` ` | | | __| | | | | // | |__| | |____| | | | ` `| |___| |____ / ____ `| | | |____| |__| | // |_____/|______|_| |_| `_`______`_____/_/ `_`_| |______|_____/ // // WARNING: this data type is deprecated and is nearing the end of its life cycle. Seek replacement. #ifndef UAVCAN_NODE_EXECUTE_COMMAND_1_0_INCLUDED_ #define UAVCAN_NODE_EXECUTE_COMMAND_1_0_INCLUDED_ #include #include #include static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_TARGET_ENDIANNESS == 1693710260, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_OMIT_FLOAT_SERIALIZATION_SUPPORT == 0, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_SERIALIZATION_ASSERTS == 1, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_OVERRIDE_VARIABLE_ARRAY_CAPACITY == 0, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_CAST_FORMAT == 2368206204, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/node/435.ExecuteCommand.1.0.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); #ifdef __cplusplus extern "C" { #endif #define uavcan_node_ExecuteCommand_1_0_HAS_FIXED_PORT_ID_ true #define uavcan_node_ExecuteCommand_1_0_FIXED_PORT_ID_ 435U // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.node.ExecuteCommand.1.0 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_node_ExecuteCommand_1_0_FULL_NAME_ "uavcan.node.ExecuteCommand" #define uavcan_node_ExecuteCommand_1_0_FULL_NAME_AND_VERSION_ "uavcan.node.ExecuteCommand.1.0" // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.node.ExecuteCommand.Request.1.0 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_node_ExecuteCommand_Request_1_0_FULL_NAME_ "uavcan.node.ExecuteCommand.Request" #define uavcan_node_ExecuteCommand_Request_1_0_FULL_NAME_AND_VERSION_ "uavcan.node.ExecuteCommand.Request.1.0" /// Extent is the minimum amount of memory required to hold any serialized representation of any compatible /// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type. /// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long. /// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large. /// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation /// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type /// is always known during serialization (unlike deserialization). If not sure, use extent everywhere. #define uavcan_node_ExecuteCommand_Request_1_0_EXTENT_BYTES_ 300UL #define uavcan_node_ExecuteCommand_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ 115UL static_assert(uavcan_node_ExecuteCommand_Request_1_0_EXTENT_BYTES_ >= uavcan_node_ExecuteCommand_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, "Internal constraint violation"); /// saturated uint16 COMMAND_RESTART = 65535 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_RESTART (65535U) /// saturated uint16 COMMAND_POWER_OFF = 65534 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_POWER_OFF (65534U) /// saturated uint16 COMMAND_BEGIN_SOFTWARE_UPDATE = 65533 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_BEGIN_SOFTWARE_UPDATE (65533U) /// saturated uint16 COMMAND_FACTORY_RESET = 65532 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_FACTORY_RESET (65532U) /// saturated uint16 COMMAND_EMERGENCY_STOP = 65531 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_EMERGENCY_STOP (65531U) /// saturated uint16 COMMAND_STORE_PERSISTENT_STATES = 65530 #define uavcan_node_ExecuteCommand_Request_1_0_COMMAND_STORE_PERSISTENT_STATES (65530U) /// Array metadata for: saturated uint8[<=112] parameter #define uavcan_node_ExecuteCommand_Request_1_0_parameter_ARRAY_CAPACITY_ 112U #define uavcan_node_ExecuteCommand_Request_1_0_parameter_ARRAY_IS_VARIABLE_LENGTH_ true typedef struct { /// saturated uint16 command uint16_t command; /// saturated uint8[<=112] parameter struct /// Array address equivalence guarantee: &elements[0] == ¶meter { uint8_t elements[uavcan_node_ExecuteCommand_Request_1_0_parameter_ARRAY_CAPACITY_]; size_t count; } parameter; } uavcan_node_ExecuteCommand_Request_1_0; /// Serialize an instance into the provided buffer. /// The lifetime of the resulting serialized representation is independent of the original instance. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original object where possible. /// /// @param obj The object to serialize. /// /// @param buffer The destination buffer. There are no alignment requirements. /// @see uavcan_node_ExecuteCommand_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes. /// Upon return this value will be updated with the size of the constructed serialized /// representation (in bytes); this value is then to be passed over to the transport /// layer. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_node_ExecuteCommand_Request_1_0_serialize_( const uavcan_node_ExecuteCommand_Request_1_0* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes) { if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL)) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } const size_t capacity_bytes = *inout_buffer_size_bytes; if ((8U * (size_t) capacity_bytes) < 920UL) { return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL; } // Notice that fields that are not an integer number of bytes long may overrun the space allocated for them // in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe. size_t offset_bits = 0U; { // saturated uint16 command NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 16ULL) <= (capacity_bytes * 8U)); // Saturation code not emitted -- native representation matches the serialized representation. const int8_t _err0_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, obj->command, 16U); if (_err0_ < 0) { return _err0_; } offset_bits += 16U; } { // saturated uint8[<=112] parameter NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 904ULL) <= (capacity_bytes * 8U)); if (obj->parameter.count > 112) { return -NUNAVUT_ERROR_REPRESENTATION_BAD_ARRAY_LENGTH; } // Array length prefix: truncated uint8 buffer[offset_bits / 8U] = (uint8_t)(obj->parameter.count); // C std, 6.3.1.3 Signed and unsigned integers offset_bits += 8U; NUNAVUT_ASSERT(offset_bits % 8U == 0U); for (size_t _index0_ = 0U; _index0_ < obj->parameter.count; ++_index0_) { NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 8ULL) <= (capacity_bytes * 8U)); // Saturation code not emitted -- native representation matches the serialized representation. buffer[offset_bits / 8U] = (uint8_t)(obj->parameter.elements[_index0_]); // C std, 6.3.1.3 Signed and unsigned integers offset_bits += 8U; } } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad0_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad0_ > 0); const int8_t _err1_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad0_); // Optimize? if (_err1_ < 0) { return _err1_; } offset_bits += _pad0_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT(offset_bits >= 24ULL); NUNAVUT_ASSERT(offset_bits <= 920ULL); NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (offset_bits / 8U); return NUNAVUT_SUCCESS; } /// Deserialize an instance from the provided buffer. /// The lifetime of the resulting object is independent of the original buffer. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original buffer where possible. /// /// @param obj The object to update from the provided serialized representation. /// /// @param buffer The source buffer containing the serialized representation. There are no alignment requirements. /// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated, /// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules. /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized /// representation, in bytes. Upon return this value will be updated with the /// size of the consumed fragment of the serialized representation (in bytes), /// which may be smaller due to the implicit truncation rule, but it is guaranteed /// to never exceed the original buffer size even if the implicit zero extension rule /// was activated. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_node_ExecuteCommand_Request_1_0_deserialize_( uavcan_node_ExecuteCommand_Request_1_0* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes) { if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes))) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } if (buffer == NULL) { buffer = (const uint8_t*)""; } const size_t capacity_bytes = *inout_buffer_size_bytes; const size_t capacity_bits = capacity_bytes * (size_t) 8U; size_t offset_bits = 0U; // saturated uint16 command NUNAVUT_ASSERT(offset_bits % 8U == 0U); out_obj->command = nunavutGetU16(&buffer[0], capacity_bytes, offset_bits, 16); offset_bits += 16U; // saturated uint8[<=112] parameter NUNAVUT_ASSERT(offset_bits % 8U == 0U); // Array length prefix: truncated uint8 if ((offset_bits + 8U) <= capacity_bits) { out_obj->parameter.count = buffer[offset_bits / 8U] & 255U; } else { out_obj->parameter.count = 0U; } offset_bits += 8U; if (out_obj->parameter.count > 112U) { return -NUNAVUT_ERROR_REPRESENTATION_BAD_ARRAY_LENGTH; } NUNAVUT_ASSERT(offset_bits % 8U == 0U); for (size_t _index1_ = 0U; _index1_ < out_obj->parameter.count; ++_index1_) { NUNAVUT_ASSERT(offset_bits % 8U == 0U); if ((offset_bits + 8U) <= capacity_bits) { out_obj->parameter.elements[_index1_] = buffer[offset_bits / 8U] & 255U; } else { out_obj->parameter.elements[_index1_] = 0U; } offset_bits += 8U; } offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U); NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes); return NUNAVUT_SUCCESS; } /// Initialize an instance to default values. Does nothing if @param out_obj is NULL. /// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length /// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field /// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)). static inline void uavcan_node_ExecuteCommand_Request_1_0_initialize_(uavcan_node_ExecuteCommand_Request_1_0* const out_obj) { if (out_obj != NULL) { size_t size_bytes = 0; const uint8_t buf = 0; const int8_t err = uavcan_node_ExecuteCommand_Request_1_0_deserialize_(out_obj, &buf, &size_bytes); NUNAVUT_ASSERT(err >= 0); (void) err; } } // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.node.ExecuteCommand.Response.1.0 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_node_ExecuteCommand_Response_1_0_FULL_NAME_ "uavcan.node.ExecuteCommand.Response" #define uavcan_node_ExecuteCommand_Response_1_0_FULL_NAME_AND_VERSION_ "uavcan.node.ExecuteCommand.Response.1.0" /// Extent is the minimum amount of memory required to hold any serialized representation of any compatible /// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type. /// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long. /// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large. /// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation /// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type /// is always known during serialization (unlike deserialization). If not sure, use extent everywhere. #define uavcan_node_ExecuteCommand_Response_1_0_EXTENT_BYTES_ 48UL #define uavcan_node_ExecuteCommand_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ 1UL static_assert(uavcan_node_ExecuteCommand_Response_1_0_EXTENT_BYTES_ >= uavcan_node_ExecuteCommand_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_, "Internal constraint violation"); /// saturated uint8 STATUS_SUCCESS = 0 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_SUCCESS (0U) /// saturated uint8 STATUS_FAILURE = 1 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_FAILURE (1U) /// saturated uint8 STATUS_NOT_AUTHORIZED = 2 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_NOT_AUTHORIZED (2U) /// saturated uint8 STATUS_BAD_COMMAND = 3 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_BAD_COMMAND (3U) /// saturated uint8 STATUS_BAD_PARAMETER = 4 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_BAD_PARAMETER (4U) /// saturated uint8 STATUS_BAD_STATE = 5 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_BAD_STATE (5U) /// saturated uint8 STATUS_INTERNAL_ERROR = 6 #define uavcan_node_ExecuteCommand_Response_1_0_STATUS_INTERNAL_ERROR (6U) typedef struct { /// saturated uint8 status uint8_t status; } uavcan_node_ExecuteCommand_Response_1_0; /// Serialize an instance into the provided buffer. /// The lifetime of the resulting serialized representation is independent of the original instance. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original object where possible. /// /// @param obj The object to serialize. /// /// @param buffer The destination buffer. There are no alignment requirements. /// @see uavcan_node_ExecuteCommand_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes. /// Upon return this value will be updated with the size of the constructed serialized /// representation (in bytes); this value is then to be passed over to the transport /// layer. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_node_ExecuteCommand_Response_1_0_serialize_( const uavcan_node_ExecuteCommand_Response_1_0* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes) { if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL)) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } const size_t capacity_bytes = *inout_buffer_size_bytes; if ((8U * (size_t) capacity_bytes) < 8UL) { return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL; } // Notice that fields that are not an integer number of bytes long may overrun the space allocated for them // in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe. size_t offset_bits = 0U; { // saturated uint8 status NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 8ULL) <= (capacity_bytes * 8U)); // Saturation code not emitted -- native representation matches the serialized representation. buffer[offset_bits / 8U] = (uint8_t)(obj->status); // C std, 6.3.1.3 Signed and unsigned integers offset_bits += 8U; } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad1_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad1_ > 0); const int8_t _err2_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad1_); // Optimize? if (_err2_ < 0) { return _err2_; } offset_bits += _pad1_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT(offset_bits == 8ULL); NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (offset_bits / 8U); return NUNAVUT_SUCCESS; } /// Deserialize an instance from the provided buffer. /// The lifetime of the resulting object is independent of the original buffer. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original buffer where possible. /// /// @param obj The object to update from the provided serialized representation. /// /// @param buffer The source buffer containing the serialized representation. There are no alignment requirements. /// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated, /// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules. /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized /// representation, in bytes. Upon return this value will be updated with the /// size of the consumed fragment of the serialized representation (in bytes), /// which may be smaller due to the implicit truncation rule, but it is guaranteed /// to never exceed the original buffer size even if the implicit zero extension rule /// was activated. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_node_ExecuteCommand_Response_1_0_deserialize_( uavcan_node_ExecuteCommand_Response_1_0* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes) { if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes))) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } if (buffer == NULL) { buffer = (const uint8_t*)""; } const size_t capacity_bytes = *inout_buffer_size_bytes; const size_t capacity_bits = capacity_bytes * (size_t) 8U; size_t offset_bits = 0U; // saturated uint8 status NUNAVUT_ASSERT(offset_bits % 8U == 0U); if ((offset_bits + 8U) <= capacity_bits) { out_obj->status = buffer[offset_bits / 8U] & 255U; } else { out_obj->status = 0U; } offset_bits += 8U; offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U); NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes); return NUNAVUT_SUCCESS; } /// Initialize an instance to default values. Does nothing if @param out_obj is NULL. /// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length /// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field /// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)). static inline void uavcan_node_ExecuteCommand_Response_1_0_initialize_(uavcan_node_ExecuteCommand_Response_1_0* const out_obj) { if (out_obj != NULL) { size_t size_bytes = 0; const uint8_t buf = 0; const int8_t err = uavcan_node_ExecuteCommand_Response_1_0_deserialize_(out_obj, &buf, &size_bytes); NUNAVUT_ASSERT(err >= 0); (void) err; } } #ifdef __cplusplus } #endif #endif // UAVCAN_NODE_EXECUTE_COMMAND_1_0_INCLUDED_