// This is an AUTO-GENERATED Cyphal DSDL data type implementation. Curious? See https://opencyphal.org. // You shouldn't attempt to edit this file. // // Checking this file under version control is not recommended unless it is used as part of a high-SIL // safety-critical codebase. The typical usage scenario is to generate it as part of the build process. // // To avoid conflicts with definitions given in the source DSDL file, all entities created by the code generator // are named with an underscore at the end, like foo_bar_(). // // Generator: nunavut-2.3.1 (serialization was enabled) // Source file: /home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl // Generated at: 2025-07-17 18:00:18.732751 UTC // Is deprecated: no // Fixed port-ID: 408 // Full name: uavcan.file.Read // Version: 1.1 // // Platform // python_implementation: CPython // python_version: 3.13.5 // python_release_level: final // python_build: ('main', 'Jun 21 2025 09:35:00') // python_compiler: GCC 15.1.1 20250425 // python_revision: // python_xoptions: {} // runtime_platform: Linux-6.15.6-arch1-1-x86_64-with-glibc2.41 // // Language Options // target_endianness: any // omit_float_serialization_support: False // enable_serialization_asserts: True // enable_override_variable_array_capacity: False // cast_format: (({type}) {value}) #ifndef UAVCAN_FILE_READ_1_1_INCLUDED_ #define UAVCAN_FILE_READ_1_1_INCLUDED_ #include #include #include #include #include #include static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_TARGET_ENDIANNESS == 1693710260, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_OMIT_FLOAT_SERIALIZATION_SUPPORT == 0, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_SERIALIZATION_ASSERTS == 1, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_OVERRIDE_VARIABLE_ARRAY_CAPACITY == 0, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_CAST_FORMAT == 2368206204, "/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/408.Read.1.1.dsdl is trying to use a serialization library that was compiled with " "different language options. This is dangerous and therefore not allowed." ); #ifdef __cplusplus extern "C" { #endif #define uavcan_file_Read_1_1_HAS_FIXED_PORT_ID_ true #define uavcan_file_Read_1_1_FIXED_PORT_ID_ 408U // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.file.Read.1.1 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_file_Read_1_1_FULL_NAME_ "uavcan.file.Read" #define uavcan_file_Read_1_1_FULL_NAME_AND_VERSION_ "uavcan.file.Read.1.1" // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.file.Read.Request.1.1 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_file_Read_Request_1_1_FULL_NAME_ "uavcan.file.Read.Request" #define uavcan_file_Read_Request_1_1_FULL_NAME_AND_VERSION_ "uavcan.file.Read.Request.1.1" /// Extent is the minimum amount of memory required to hold any serialized representation of any compatible /// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type. /// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long. /// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large. /// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation /// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type /// is always known during serialization (unlike deserialization). If not sure, use extent everywhere. #define uavcan_file_Read_Request_1_1_EXTENT_BYTES_ 300UL #define uavcan_file_Read_Request_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_ 261UL static_assert(uavcan_file_Read_Request_1_1_EXTENT_BYTES_ >= uavcan_file_Read_Request_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_, "Internal constraint violation"); typedef struct { /// truncated uint40 offset uint64_t offset; /// uavcan.file.Path.2.0 path uavcan_file_Path_2_0 path; } uavcan_file_Read_Request_1_1; /// Serialize an instance into the provided buffer. /// The lifetime of the resulting serialized representation is independent of the original instance. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original object where possible. /// /// @param obj The object to serialize. /// /// @param buffer The destination buffer. There are no alignment requirements. /// @see uavcan_file_Read_Request_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_ /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes. /// Upon return this value will be updated with the size of the constructed serialized /// representation (in bytes); this value is then to be passed over to the transport /// layer. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_file_Read_Request_1_1_serialize_( const uavcan_file_Read_Request_1_1* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes) { if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL)) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } const size_t capacity_bytes = *inout_buffer_size_bytes; if ((8U * (size_t) capacity_bytes) < 2088UL) { return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL; } // Notice that fields that are not an integer number of bytes long may overrun the space allocated for them // in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe. size_t offset_bits = 0U; { // truncated uint40 offset NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 40ULL) <= (capacity_bytes * 8U)); const int8_t _err0_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, obj->offset, 40U); if (_err0_ < 0) { return _err0_; } offset_bits += 40U; } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad0_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad0_ > 0); const int8_t _err1_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad0_); // Optimize? if (_err1_ < 0) { return _err1_; } offset_bits += _pad0_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } { // uavcan.file.Path.2.0 path NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 2048ULL) <= (capacity_bytes * 8U)); size_t _size_bytes0_ = 256UL; // Nested object (max) size, in bytes. NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits / 8U + _size_bytes0_) <= capacity_bytes); int8_t _err2_ = uavcan_file_Path_2_0_serialize_( &obj->path, &buffer[offset_bits / 8U], &_size_bytes0_); if (_err2_ < 0) { return _err2_; } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT((_size_bytes0_ * 8U) >= 8ULL); NUNAVUT_ASSERT((_size_bytes0_ * 8U) <= 2048ULL); offset_bits += _size_bytes0_ * 8U; // Advance by the size of the nested object. NUNAVUT_ASSERT(offset_bits <= (capacity_bytes * 8U)); } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad1_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad1_ > 0); const int8_t _err3_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad1_); // Optimize? if (_err3_ < 0) { return _err3_; } offset_bits += _pad1_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT(offset_bits >= 48ULL); NUNAVUT_ASSERT(offset_bits <= 2088ULL); NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (offset_bits / 8U); return NUNAVUT_SUCCESS; } /// Deserialize an instance from the provided buffer. /// The lifetime of the resulting object is independent of the original buffer. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original buffer where possible. /// /// @param obj The object to update from the provided serialized representation. /// /// @param buffer The source buffer containing the serialized representation. There are no alignment requirements. /// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated, /// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules. /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized /// representation, in bytes. Upon return this value will be updated with the /// size of the consumed fragment of the serialized representation (in bytes), /// which may be smaller due to the implicit truncation rule, but it is guaranteed /// to never exceed the original buffer size even if the implicit zero extension rule /// was activated. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_file_Read_Request_1_1_deserialize_( uavcan_file_Read_Request_1_1* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes) { if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes))) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } if (buffer == NULL) { buffer = (const uint8_t*)""; } const size_t capacity_bytes = *inout_buffer_size_bytes; const size_t capacity_bits = capacity_bytes * (size_t) 8U; size_t offset_bits = 0U; // truncated uint40 offset NUNAVUT_ASSERT(offset_bits % 8U == 0U); out_obj->offset = nunavutGetU64(&buffer[0], capacity_bytes, offset_bits, 40); offset_bits += 40U; offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. // uavcan.file.Path.2.0 path NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); { size_t _size_bytes1_ = (size_t)(capacity_bytes - nunavutChooseMin((offset_bits / 8U), capacity_bytes)); NUNAVUT_ASSERT(offset_bits % 8U == 0U); const int8_t _err4_ = uavcan_file_Path_2_0_deserialize_( &out_obj->path, &buffer[offset_bits / 8U], &_size_bytes1_); if (_err4_ < 0) { return _err4_; } offset_bits += _size_bytes1_ * 8U; // Advance by the size of the nested serialized representation. } offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U); NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes); return NUNAVUT_SUCCESS; } /// Initialize an instance to default values. Does nothing if @param out_obj is NULL. /// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length /// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field /// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)). static inline void uavcan_file_Read_Request_1_1_initialize_(uavcan_file_Read_Request_1_1* const out_obj) { if (out_obj != NULL) { size_t size_bytes = 0; const uint8_t buf = 0; const int8_t err = uavcan_file_Read_Request_1_1_deserialize_(out_obj, &buf, &size_bytes); NUNAVUT_ASSERT(err >= 0); (void) err; } } // +-------------------------------------------------------------------------------------------------------------------+ // | uavcan.file.Read.Response.1.1 // +-------------------------------------------------------------------------------------------------------------------+ #define uavcan_file_Read_Response_1_1_FULL_NAME_ "uavcan.file.Read.Response" #define uavcan_file_Read_Response_1_1_FULL_NAME_AND_VERSION_ "uavcan.file.Read.Response.1.1" /// Extent is the minimum amount of memory required to hold any serialized representation of any compatible /// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type. /// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long. /// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large. /// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation /// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type /// is always known during serialization (unlike deserialization). If not sure, use extent everywhere. #define uavcan_file_Read_Response_1_1_EXTENT_BYTES_ 300UL #define uavcan_file_Read_Response_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_ 260UL static_assert(uavcan_file_Read_Response_1_1_EXTENT_BYTES_ >= uavcan_file_Read_Response_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_, "Internal constraint violation"); typedef struct { /// uavcan.file.Error.1.0 error uavcan_file_Error_1_0 _error; /// uavcan.primitive.Unstructured.1.0 data uavcan_primitive_Unstructured_1_0 data; } uavcan_file_Read_Response_1_1; /// Serialize an instance into the provided buffer. /// The lifetime of the resulting serialized representation is independent of the original instance. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original object where possible. /// /// @param obj The object to serialize. /// /// @param buffer The destination buffer. There are no alignment requirements. /// @see uavcan_file_Read_Response_1_1_SERIALIZATION_BUFFER_SIZE_BYTES_ /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes. /// Upon return this value will be updated with the size of the constructed serialized /// representation (in bytes); this value is then to be passed over to the transport /// layer. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_file_Read_Response_1_1_serialize_( const uavcan_file_Read_Response_1_1* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes) { if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL)) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } const size_t capacity_bytes = *inout_buffer_size_bytes; if ((8U * (size_t) capacity_bytes) < 2080UL) { return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL; } // Notice that fields that are not an integer number of bytes long may overrun the space allocated for them // in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe. size_t offset_bits = 0U; { // uavcan.file.Error.1.0 error NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 16ULL) <= (capacity_bytes * 8U)); size_t _size_bytes2_ = 2UL; // Nested object (max) size, in bytes. NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits / 8U + _size_bytes2_) <= capacity_bytes); int8_t _err5_ = uavcan_file_Error_1_0_serialize_( &obj->_error, &buffer[offset_bits / 8U], &_size_bytes2_); if (_err5_ < 0) { return _err5_; } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT((_size_bytes2_ * 8U) == 16ULL); offset_bits += _size_bytes2_ * 8U; // Advance by the size of the nested object. NUNAVUT_ASSERT(offset_bits <= (capacity_bytes * 8U)); } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad2_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad2_ > 0); const int8_t _err6_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad2_); // Optimize? if (_err6_ < 0) { return _err6_; } offset_bits += _pad2_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } { // uavcan.primitive.Unstructured.1.0 data NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits + 2064ULL) <= (capacity_bytes * 8U)); size_t _size_bytes3_ = 258UL; // Nested object (max) size, in bytes. NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT((offset_bits / 8U + _size_bytes3_) <= capacity_bytes); int8_t _err7_ = uavcan_primitive_Unstructured_1_0_serialize_( &obj->data, &buffer[offset_bits / 8U], &_size_bytes3_); if (_err7_ < 0) { return _err7_; } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT((_size_bytes3_ * 8U) >= 16ULL); NUNAVUT_ASSERT((_size_bytes3_ * 8U) <= 2064ULL); offset_bits += _size_bytes3_ * 8U; // Advance by the size of the nested object. NUNAVUT_ASSERT(offset_bits <= (capacity_bytes * 8U)); } if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks. { const uint8_t _pad3_ = (uint8_t)(8U - offset_bits % 8U); NUNAVUT_ASSERT(_pad3_ > 0); const int8_t _err8_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad3_); // Optimize? if (_err8_ < 0) { return _err8_; } offset_bits += _pad3_; NUNAVUT_ASSERT(offset_bits % 8U == 0U); } // It is assumed that we know the exact type of the serialized entity, hence we expect the size to match. NUNAVUT_ASSERT(offset_bits >= 32ULL); NUNAVUT_ASSERT(offset_bits <= 2080ULL); NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (offset_bits / 8U); return NUNAVUT_SUCCESS; } /// Deserialize an instance from the provided buffer. /// The lifetime of the resulting object is independent of the original buffer. /// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision /// we may define a zero-copy alternative that keeps references to the original buffer where possible. /// /// @param obj The object to update from the provided serialized representation. /// /// @param buffer The source buffer containing the serialized representation. There are no alignment requirements. /// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated, /// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules. /// /// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized /// representation, in bytes. Upon return this value will be updated with the /// size of the consumed fragment of the serialized representation (in bytes), /// which may be smaller due to the implicit truncation rule, but it is guaranteed /// to never exceed the original buffer size even if the implicit zero extension rule /// was activated. In case of error this value is undefined. /// /// @returns Negative on error, zero on success. static inline int8_t uavcan_file_Read_Response_1_1_deserialize_( uavcan_file_Read_Response_1_1* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes) { if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes))) { return -NUNAVUT_ERROR_INVALID_ARGUMENT; } if (buffer == NULL) { buffer = (const uint8_t*)""; } const size_t capacity_bytes = *inout_buffer_size_bytes; const size_t capacity_bits = capacity_bytes * (size_t) 8U; size_t offset_bits = 0U; // uavcan.file.Error.1.0 error NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); { size_t _size_bytes4_ = (size_t)(capacity_bytes - nunavutChooseMin((offset_bits / 8U), capacity_bytes)); NUNAVUT_ASSERT(offset_bits % 8U == 0U); const int8_t _err9_ = uavcan_file_Error_1_0_deserialize_( &out_obj->_error, &buffer[offset_bits / 8U], &_size_bytes4_); if (_err9_ < 0) { return _err9_; } offset_bits += _size_bytes4_ * 8U; // Advance by the size of the nested serialized representation. } offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. // uavcan.primitive.Unstructured.1.0 data NUNAVUT_ASSERT(offset_bits % 8U == 0U); NUNAVUT_ASSERT(offset_bits % 8U == 0U); { size_t _size_bytes5_ = (size_t)(capacity_bytes - nunavutChooseMin((offset_bits / 8U), capacity_bytes)); NUNAVUT_ASSERT(offset_bits % 8U == 0U); const int8_t _err10_ = uavcan_primitive_Unstructured_1_0_deserialize_( &out_obj->data, &buffer[offset_bits / 8U], &_size_bytes5_); if (_err10_ < 0) { return _err10_; } offset_bits += _size_bytes5_ * 8U; // Advance by the size of the nested serialized representation. } offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits. NUNAVUT_ASSERT(offset_bits % 8U == 0U); *inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U); NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes); return NUNAVUT_SUCCESS; } /// Initialize an instance to default values. Does nothing if @param out_obj is NULL. /// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length /// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field /// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)). static inline void uavcan_file_Read_Response_1_1_initialize_(uavcan_file_Read_Response_1_1* const out_obj) { if (out_obj != NULL) { size_t size_bytes = 0; const uint8_t buf = 0; const int8_t err = uavcan_file_Read_Response_1_1_deserialize_(out_obj, &buf, &size_bytes); NUNAVUT_ASSERT(err >= 0); (void) err; } } #ifdef __cplusplus } #endif #endif // UAVCAN_FILE_READ_1_1_INCLUDED_