#define NUNAVUT_ASSERT assert #include "cyphal_hardware_interface/cyphal_system.hpp" #include "include/cyphal_hardware_interface/cyphal_system.hpp" #include #include #include #include #include #include #include #include #include #include #include #include "socketcan.h" // #include "serial.hpp" #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "rclcpp/rclcpp.hpp" // #include "cyphal.hpp" #include #include #include // For std::setw, std::setfill, std::hex, etc. #include #include // For std::ostringstream #include #define NUNAVUT_ASSERT assert extern "C" { #include "canard.h" #include #include #include #include #include #include #include } namespace cyphal_hardware_interface { uint64_t getMonotonicMicroseconds() { auto now = std::chrono::steady_clock::now(); auto micros = std::chrono::duration_cast( now.time_since_epoch()) .count(); return static_cast(micros); } std::string cyphalUdralServo::get_non_read_register_name() const { for (const auto &[name, reg] : registers) { if (uavcan_register_Value_1_0_is_empty_(®)) { return name; } } return ""; } bool cyphalUdralServo::all_registers_read() const { return state.register_read && get_non_read_register_name() == ""; } cyphalSystemHardware::~cyphalSystemHardware() { if (can_socket >= 0) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Closing socket of interface '%s'", can_if_.c_str()); // close(serial_port_handle); } } void cyphalSystemHardware::send(const CanardMicrosecond tx_deadline_usec, const CanardTransferMetadata *const metadata, const size_t payload_size, const void *const payload_data, const CanardMicrosecond now_usec) { const struct CanardPayload payload = {.size = payload_size, .data = payload_data}; (void)canardTxPush(&canard_tx_queues[0], &canard, tx_deadline_usec, metadata, payload, now_usec, NULL); } void cyphalSystemHardware::read_register_list_idx(unsigned char node_id, int register_idx) { uavcan_register_List_Request_1_0 msg = {0}; msg.index = register_idx; const CanardMicrosecond now_usec = getMonotonicMicroseconds(); uint8_t serialized [uavcan_register_List_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_]; size_t serialized_size = sizeof(serialized); const int8_t err = uavcan_register_List_Request_1_0_serialize_( &msg, &serialized[0], &serialized_size); assert(err >= 0); if (err >= 0) { const CanardTransferMetadata transfer = { .priority = CanardPriorityNominal, .transfer_kind = CanardTransferKindRequest, .port_id = uavcan_register_List_1_0_FIXED_PORT_ID_, .remote_node_id = node_id, .transfer_id = (CanardTransferID)(next_transfer_id++), }; send(now_usec + 1e9, &transfer, serialized_size, &serialized[0], now_usec); } } void cyphalSystemHardware::send_readiness( enum arming_state arming_state_target) { reg_udral_service_common_Readiness_0_1 msg; msg.value = arming_state_target == ARMED ? reg_udral_service_common_Readiness_0_1_ENGAGED : reg_udral_service_common_Readiness_0_1_STANDBY; const CanardMicrosecond now_usec = getMonotonicMicroseconds(); uint8_t serialized [reg_udral_service_common_Readiness_0_1_SERIALIZATION_BUFFER_SIZE_BYTES_]; size_t serialized_size = sizeof(serialized); const int8_t err = reg_udral_service_common_Readiness_0_1_serialize_( &msg, &serialized[0], &serialized_size); assert(err >= 0); if (err >= 0) { const CanardTransferMetadata transfer = { .priority = CanardPriorityNominal, .transfer_kind = CanardTransferKindMessage, .port_id = readiness_port, .remote_node_id = CANARD_NODE_ID_UNSET, .transfer_id = (CanardTransferID)(next_transfer_id++), }; send(now_usec + 1e9, &transfer, serialized_size, &serialized[0], now_usec); } } void cyphalSystemHardware::write_register(cyphalUdralServo &servo, std::string name, uavcan_register_Value_1_0 value) { if (servo.state.requested_register_name != "" || name == "") { return; } servo.state.requested_register_name = name; unsigned char node_id = servo.node_id; uavcan_register_Access_Request_1_0 msg; memset(&msg, 0, sizeof msg); if (name.length() > sizeof msg.name.name.elements - 1) { name.resize(sizeof msg.name.name.elements); } strcpy((char *)msg.name.name.elements, name.c_str()); msg.name.name.count = name.length(); msg.value = value; const CanardMicrosecond now_usec = getMonotonicMicroseconds(); uint8_t serialized [uavcan_register_Access_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_]; size_t serialized_size = sizeof(serialized); const int8_t err = uavcan_register_Access_Request_1_0_serialize_( &msg, &serialized[0], &serialized_size); assert(err >= 0); if (err >= 0) { const CanardTransferMetadata transfer = { .priority = CanardPriorityNominal, .transfer_kind = CanardTransferKindRequest, .port_id = uavcan_register_Access_1_0_FIXED_PORT_ID_, .remote_node_id = node_id, .transfer_id = (CanardTransferID)(next_transfer_id++), }; send(now_usec + 1e9, &transfer, serialized_size, &serialized[0], now_usec); } } void cyphalSystemHardware::read_register(cyphalUdralServo &servo, std::string name) { uavcan_register_Value_1_0 value; uavcan_register_Value_1_0_select_empty_(&value); write_register(servo, name, value); } /** * @brief Static method to call read_thread via std::thread * @param context pointer to this */ void cyphalSystemHardware::read_thread_static(void *context) { static_cast(context)->read_thread(); } hardware_interface::CallbackReturn cyphalSystemHardware::on_init( const hardware_interface::HardwareComponentInterfaceParams ¶ms) { if (hardware_interface::SystemInterface::on_init(params) != hardware_interface::CallbackReturn::SUCCESS) { return hardware_interface::CallbackReturn::ERROR; } can_if_ = default_if_; if (info_.hardware_parameters.count("can_if") > 0) { can_if_ = info_.hardware_parameters.at("can_if"); } else { RCLCPP_WARN(rclcpp::get_logger("cyphalSystemHardware"), "No can interface specified in urdf, using default value"); } RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "If set as %s", can_if_.c_str()); std::vector components; components.insert(components.begin(), info_.joints.begin(), info_.joints.end()); components.insert(components.begin(), info_.sensors.begin(), info_.sensors.end()); components.insert(components.begin(), info_.gpios.begin(), info_.gpios.end()); for (const hardware_interface::ComponentInfo &joint : components) { if (joint.parameters.contains("node_id")) { int node_id = -1; try { node_id = std::stoi(joint.parameters.at("node_id")); } catch (std::exception &e) { } if (node_id < 0 || node_id >= 0xFF) { RCLCPP_ERROR(rclcpp::get_logger("cyphalSystemHardware"), "No node_id '%s' invalid!", joint.parameters.at("node_id").c_str()); return hardware_interface::CallbackReturn::ERROR; } servos[node_id].node_id = node_id; servos[node_id].name = joint.name; } else { RCLCPP_ERROR(rclcpp::get_logger("cyphalSystemHardware"), "No node_id configured for servo!"); return hardware_interface::CallbackReturn::ERROR; } // for (const auto &i : joint.command_interfaces) { // RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "%s: %s: %d", // joint.name.c_str(), i.name.c_str(), // (int)i.parameters.size()); // } // for (const auto &i : joint.state_interfaces) { // RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "%s: %s: %d", // joint.name.c_str(), i.name.c_str(), // (int)i.parameters.size()); // } } canard_memory.deallocate = canardDeallocate; canard_memory.allocate = canardAllocate; // The libcanard instance requires the allocator for managing protocol states. canard = canardInit(canard_memory); canard_tx_queues[0] = canardTxInit(100, CANARD_MTU_CAN_CLASSIC, canard_memory); canard.node_id = 100; static struct CanardRxSubscription rx; int8_t res = // canardRxSubscribe(&canard, CanardTransferKindMessage, uavcan_node_Heartbeat_1_0_FIXED_PORT_ID_, uavcan_node_Heartbeat_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx); if (res < 0) { return hardware_interface::CallbackReturn::ERROR; } static struct CanardRxSubscription rx_register_list_response_; res = // canardRxSubscribe(&canard, CanardTransferKindResponse, uavcan_register_List_1_0_FIXED_PORT_ID_, uavcan_register_List_Response_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx_register_list_response_); if (res < 0) { return hardware_interface::CallbackReturn::ERROR; } static struct CanardRxSubscription rx_register_access_Response_; res = // canardRxSubscribe(&canard, CanardTransferKindResponse, uavcan_register_Access_1_0_FIXED_PORT_ID_, uavcan_register_Access_Response_1_0_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx_register_access_Response_); if (res < 0) { return hardware_interface::CallbackReturn::ERROR; } static struct CanardRxSubscription rx_reg_udral_physics_dynamics_; res = // canardRxSubscribe( &canard, CanardTransferKindMessage, dynamics_state_port, reg_udral_physics_dynamics_rotation_PlanarTs_0_1_EXTENT_BYTES_, CANARD_DEFAULT_TRANSFER_ID_TIMEOUT_USEC, &rx_reg_udral_physics_dynamics_); if (res < 0) { return hardware_interface::CallbackReturn::ERROR; } return hardware_interface::CallbackReturn::SUCCESS; } // namespace cyphal_hardware_interface hardware_interface::CallbackReturn cyphalSystemHardware::on_configure( const rclcpp_lifecycle::State & /*previous_state*/) { can_socket = socketcanOpen(can_if_.c_str(), 8); /* MTU == 8 -> classic CAN */ if (can_socket < 0) { RCLCPP_FATAL(rclcpp::get_logger("cyphalSystemHardware"), "Could not open socket for can interface '%s'", can_if_.c_str()); return hardware_interface::CallbackReturn::FAILURE; } RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Opened socketcan socket for '%s'", can_if_.c_str()); read_thread_handle = std::thread([this]() { read_thread_static(this); }); /** wait_for_nodes **/ using namespace std::chrono_literals; auto start_time = std::chrono::steady_clock::now(); while (true) { bool ready = true; for (const auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; if (!s.state.alive || !s.all_registers_read()) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Waiting for '%d'", id); ready = false; break; } } if (ready) { break; } if (std::chrono::steady_clock::now() > start_time + 10s) { RCLCPP_ERROR(rclcpp::get_logger("cyphalSystemHardware"), "Timed out while waiting for servos"); return hardware_interface::CallbackReturn::ERROR; } std::this_thread::sleep_for(200ms); } return hardware_interface::CallbackReturn::SUCCESS; } void cyphalSystemHardware::processReceivedTransfer( const struct CanardRxTransfer *const transfer, const CanardMicrosecond now_usec) { (void)now_usec; const int node_id = transfer->metadata.remote_node_id; if (transfer->metadata.transfer_kind == CanardTransferKindResponse) { if (!servos.contains(node_id)) { return; } std::unique_lock lock{servos[node_id].mtx}; if (transfer->metadata.port_id == uavcan_register_List_1_0_FIXED_PORT_ID_) { uavcan_register_List_Response_1_0 resp; memset(&resp, 0, sizeof resp); size_t size = transfer->payload.size; if (uavcan_register_List_Response_1_0_deserialize_( &resp, (uint8_t *)transfer->payload.data, &size) >= 0) { if (resp.name.name.count == 0) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Register list read from '%d'", node_id); servos[node_id].state.register_read = true; read_register(servos[node_id], servos[node_id].get_non_read_register_name()); } else { char name[uavcan_register_Name_1_0_name_ARRAY_CAPACITY_ + 1] = {0}; memcpy(&name[0], resp.name.name.elements, resp.name.name.count); name[resp.name.name.count] = '\0'; RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "reg_name: %s", name); uavcan_register_Value_1_0 value; uavcan_register_Value_1_0_select_empty_(&value); servos[node_id].registers[name] = value; read_register_list_idx(node_id, servos[node_id].registers.size()); } } } else if (transfer->metadata.port_id == uavcan_register_Access_1_0_FIXED_PORT_ID_) { uavcan_register_Access_Response_1_0 resp; memset(&resp, 0, sizeof resp); size_t size = transfer->payload.size; if (uavcan_register_Access_Response_1_0_deserialize_( &resp, (uint8_t *)transfer->payload.data, &size) >= 0) { if (servos[node_id].state.requested_register_name.length() == 0) { RCLCPP_ERROR(rclcpp::get_logger("cyphalSystemHardware"), "reg_value recieved but non requested!"); return; } servos[node_id] .registers[servos[node_id].state.requested_register_name] = resp.value; RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "reg_value '%s' recieved", servos[node_id].state.requested_register_name.c_str()); servos[node_id].state.requested_register_name = ""; if (servos[node_id].state.requested_register_name == "") { auto non_read_register = servos[node_id].get_non_read_register_name(); read_register(servos[node_id], non_read_register); } } } } else if (transfer->metadata.transfer_kind == CanardTransferKindMessage) { if (transfer->metadata.port_id == uavcan_node_Heartbeat_1_0_FIXED_PORT_ID_) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "heartbeat of '%d' recieved", node_id); if (!servos.contains(node_id)) { return; } std::unique_lock lock{servos[node_id].mtx}; uavcan_node_Heartbeat_1_0 msg; size_t size = transfer->payload.size; if (uavcan_node_Heartbeat_1_0_deserialize_( &msg, (uint8_t *)transfer->payload.data, &size) >= 0) { if (!servos[node_id].state.alive) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Starting to read register list of '%d'", node_id); read_register_list_idx(node_id, 0); } servos[node_id].state.alive = true; } } else if (transfer->metadata.port_id == dynamics_state_port) { if (!servos.contains(node_id)) { return; } std::unique_lock lock{servos[node_id].mtx}; reg_udral_physics_dynamics_rotation_PlanarTs_0_1 msg; size_t size = transfer->payload.size; if (reg_udral_physics_dynamics_rotation_PlanarTs_0_1_deserialize_( &msg, (uint8_t *)transfer->payload.data, &size) >= 0) { servos[node_id].state.kinematics = msg.value.kinematics; } } } } void cyphalSystemHardware::write_can() { const CanardMicrosecond now_usec = getMonotonicMicroseconds(); struct CanardTxQueue *const que = &canard_tx_queues[0]; struct CanardTxQueueItem *tqi = canardTxPeek(que); // Find the highest-priority frame. while (tqi != NULL) { // Attempt transmission only if the frame is not yet timed out while waiting // in the TX queue. Otherwise just drop it and move on to the next one. if ((tqi->tx_deadline_usec == 0) || (tqi->tx_deadline_usec > now_usec)) { const struct CanardFrame canard_frame = { .extended_can_id = tqi->frame.extended_can_id, .payload = {.size = tqi->frame.payload.size, .data = tqi->frame.payload.data}}; // const int16_t result = socketcanPush(sock[ifidx], &canard_frame, 0); // // Non-blocking write attempt. const int16_t result = socketcanPush(can_socket, &canard_frame, 0); // Non-blocking write attempt. if (result == 0) { break; // The queue is full, we will try again on the next iteration. } if (result < 0) { return; // SocketCAN interface failure (link down?) } } struct CanardTxQueueItem *const mut_tqi = canardTxPop(que, tqi); canardTxFree(que, &canard, mut_tqi); tqi = canardTxPeek(que); } } void cyphalSystemHardware::read_thread() { while (true) { struct CanardFrame frame; CanardMicrosecond out_timestamp_usec; CanardMicrosecond timeout_usec = 0; bool loopback = false; uint8_t payload_buffer[CANARD_MTU_CAN_CLASSIC]; int ret = socketcanPop(can_socket, &frame, &out_timestamp_usec, sizeof(payload_buffer), payload_buffer, timeout_usec, &loopback); if (loopback || ret == 0) { continue; } if (ret < 0) { RCLCPP_FATAL(rclcpp::get_logger("cyphalSystemHardware"), "socketcanPop error (ret=%d)", ret); return; } // RCLCPP_INFO( // rclcpp::get_logger("cyphalSystemHardware"), // "ok %d %dms %d: %02X %02X %02X %02X %02X %02X %02X %02X", ret, // (int)out_timestamp_usec / 1000, (int)frame.payload.size, // frame.payload.size <= 0 ? 0 : (int)((uint8_t // *)frame.payload.data)[0], frame.payload.size <= 1 ? 0 : // (int)((uint8_t *)frame.payload.data)[1], frame.payload.size <= 2 ? 0 // : (int)((uint8_t *)frame.payload.data)[2], frame.payload.size <= 3 ? // 0 : (int)((uint8_t *)frame.payload.data)[3], frame.payload.size <= 4 // ? 0 : (int)((uint8_t *)frame.payload.data)[4], frame.payload.size <= // 5 ? 0 : (int)((uint8_t *)frame.payload.data)[5], frame.payload.size // <= 6 ? 0 : (int)((uint8_t *)frame.payload.data)[6], // frame.payload.size <= 7 ? 0 : (int)((uint8_t // *)frame.payload.data)[7]); // The SocketCAN adapter uses the wall clock for timestamping, but we need // monotonic. Wall clock can only be used for time synchronization. const CanardMicrosecond timestamp_usec = getMonotonicMicroseconds(); struct CanardRxTransfer transfer; memset(&transfer, 0, sizeof transfer); const int ifidx = 0; /* interface id */ const int8_t canard_result = canardRxAccept(&canard, out_timestamp_usec, &frame, ifidx, &transfer, NULL); if (canard_result > 0) { processReceivedTransfer(&transfer, timestamp_usec); canard.memory.deallocate(canard.memory.user_reference, transfer.payload.allocated_size, transfer.payload.data); } else if (canard_result == -CANARD_ERROR_OUT_OF_MEMORY) { (void)0; // The frame did not complete a transfer so there is nothing to // do. // OOM should never occur if the heap is sized correctly. You can track // OOM errors via heap API. RCLCPP_FATAL(rclcpp::get_logger("cyphalSystemHardware"), "OOM!"); return; } else if (canard_result == 0) { (void)0; // The frame did not complete a transfer so there is nothing to // do. using namespace std::chrono_literals; std::this_thread::sleep_for(10us); continue; } else { assert(false); // No other error can possibly occur at runtime. // return hardware_interface::return_type::ERROR; return; } write_can(); } } hardware_interface::CallbackReturn cyphalSystemHardware::on_activate( const rclcpp_lifecycle::State & /*previous_state*/) { // BEGIN: This part here is for exemplary purposes - Please do not copy to // your production code RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Activating"); RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Successfully activated!"); int i = 0; for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; s.arm_target = ARMED; uavcan_register_Value_1_0 value; uavcan_register_Value_1_0_select_natural16_(&value); value.natural16.value.elements[0] = readiness_port; value.natural16.value.count = 1; write_register(s, "uavcan.sub.servo.readiness.id", value); const uint16_t dynamics_port = dynamics_state_port; uavcan_register_Value_1_0_select_natural16_(&value); value.natural16.value.elements[0] = dynamics_port; value.natural16.value.count = 1; write_register(s, "uavcan.pub.servo.dynamics.id", value); i += 1; } return hardware_interface::CallbackReturn::SUCCESS; } hardware_interface::CallbackReturn cyphalSystemHardware::on_deactivate( const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("cyphalSystemHardware"), "Deactivating"); for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; s.arm_target = DISARMED; } return hardware_interface::CallbackReturn::SUCCESS; } hardware_interface::return_type cyphalSystemHardware::read(const rclcpp::Time & /*time*/, const rclcpp::Duration & /*period*/) { for (const auto &[name, descr] : joint_state_interfaces_) { if (descr.get_interface_name() == hardware_interface::HW_IF_POSITION) { for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; if (s.name == descr.get_prefix_name()) { set_state(name, (double)s.state.kinematics.angular_position.radian); break; } } } else if (descr.get_interface_name() == hardware_interface::HW_IF_VELOCITY) { for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; if (s.name == descr.get_prefix_name()) { set_state(name, (double)s.state.kinematics.angular_velocity.radian_per_second); break; } } } else if (descr.get_interface_name() == hardware_interface::HW_IF_ACCELERATION) { for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; if (s.name == descr.get_prefix_name()) { set_state( name, (double)s.state.kinematics.angular_acceleration.radian_per_second_per_second); break; } } } } return hardware_interface::return_type::OK; } hardware_interface::return_type cyphal_hardware_interface ::cyphalSystemHardware::write( const rclcpp::Time & /*time*/, const rclcpp::Duration & /*period*/) { for (auto &[id, s] : servos) { std::unique_lock lock{s.mtx}; } send_readiness(ARMED); return hardware_interface::return_type::OK; } } // namespace cyphal_hardware_interface #include "pluginlib/class_list_macros.hpp" PLUGINLIB_EXPORT_CLASS(cyphal_hardware_interface::cyphalSystemHardware, hardware_interface::SystemInterface)