2025-07-19 15:26:29 +02:00

503 lines
26 KiB
C

// This is an AUTO-GENERATED Cyphal DSDL data type implementation. Curious? See https://opencyphal.org.
// You shouldn't attempt to edit this file.
//
// Checking this file under version control is not recommended unless it is used as part of a high-SIL
// safety-critical codebase. The typical usage scenario is to generate it as part of the build process.
//
// To avoid conflicts with definitions given in the source DSDL file, all entities created by the code generator
// are named with an underscore at the end, like foo_bar_().
//
// Generator: nunavut-2.3.1 (serialization was enabled)
// Source file: /home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl
// Generated at: 2025-07-17 18:00:18.741326 UTC
// Is deprecated: yes
// Fixed port-ID: 409
// Full name: uavcan.file.Write
// Version: 1.0
//
// Platform
// python_implementation: CPython
// python_version: 3.13.5
// python_release_level: final
// python_build: ('main', 'Jun 21 2025 09:35:00')
// python_compiler: GCC 15.1.1 20250425
// python_revision:
// python_xoptions: {}
// runtime_platform: Linux-6.15.6-arch1-1-x86_64-with-glibc2.41
//
// Language Options
// target_endianness: any
// omit_float_serialization_support: False
// enable_serialization_asserts: True
// enable_override_variable_array_capacity: False
// cast_format: (({type}) {value})
// _____ ______ _____ _____ ______ _____ _______ ______ _____
// | __ `| ____| __ `| __ `| ____/ ____| /`|__ __| ____| __ `
// | | | | |__ | |__) | |__) | |__ | | / ` | | | |__ | | | |
// | | | | __| | ___/| _ /| __|| | / /` ` | | | __| | | | |
// | |__| | |____| | | | ` `| |___| |____ / ____ `| | | |____| |__| |
// |_____/|______|_| |_| `_`______`_____/_/ `_`_| |______|_____/
//
// WARNING: this data type is deprecated and is nearing the end of its life cycle. Seek replacement.
#ifndef UAVCAN_FILE_WRITE_1_0_INCLUDED_
#define UAVCAN_FILE_WRITE_1_0_INCLUDED_
#include <nunavut/support/serialization.h>
#include <stdint.h>
#include <stdlib.h>
#include <uavcan/file/Error_1_0.h>
#include <uavcan/file/Path_1_0.h>
static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_TARGET_ENDIANNESS == 1693710260,
"/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl is trying to use a serialization library that was compiled with "
"different language options. This is dangerous and therefore not allowed." );
static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_OMIT_FLOAT_SERIALIZATION_SUPPORT == 0,
"/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl is trying to use a serialization library that was compiled with "
"different language options. This is dangerous and therefore not allowed." );
static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_SERIALIZATION_ASSERTS == 1,
"/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl is trying to use a serialization library that was compiled with "
"different language options. This is dangerous and therefore not allowed." );
static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_ENABLE_OVERRIDE_VARIABLE_ARRAY_CAPACITY == 0,
"/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl is trying to use a serialization library that was compiled with "
"different language options. This is dangerous and therefore not allowed." );
static_assert( NUNAVUT_SUPPORT_LANGUAGE_OPTION_CAST_FORMAT == 2368206204,
"/home/nils/development/N17BLDC/fw/.pio/libdeps/nilsdriverv1/public_regulated_data_types/uavcan/file/409.Write.1.0.dsdl is trying to use a serialization library that was compiled with "
"different language options. This is dangerous and therefore not allowed." );
#ifdef __cplusplus
extern "C" {
#endif
#define uavcan_file_Write_1_0_HAS_FIXED_PORT_ID_ true
#define uavcan_file_Write_1_0_FIXED_PORT_ID_ 409U
// +-------------------------------------------------------------------------------------------------------------------+
// | uavcan.file.Write.1.0
// +-------------------------------------------------------------------------------------------------------------------+
#define uavcan_file_Write_1_0_FULL_NAME_ "uavcan.file.Write"
#define uavcan_file_Write_1_0_FULL_NAME_AND_VERSION_ "uavcan.file.Write.1.0"
// +-------------------------------------------------------------------------------------------------------------------+
// | uavcan.file.Write.Request.1.0
// +-------------------------------------------------------------------------------------------------------------------+
#define uavcan_file_Write_Request_1_0_FULL_NAME_ "uavcan.file.Write.Request"
#define uavcan_file_Write_Request_1_0_FULL_NAME_AND_VERSION_ "uavcan.file.Write.Request.1.0"
/// Extent is the minimum amount of memory required to hold any serialized representation of any compatible
/// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type.
/// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long.
/// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large.
/// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation
/// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type
/// is always known during serialization (unlike deserialization). If not sure, use extent everywhere.
#define uavcan_file_Write_Request_1_0_EXTENT_BYTES_ 600UL
#define uavcan_file_Write_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ 311UL
static_assert(uavcan_file_Write_Request_1_0_EXTENT_BYTES_ >= uavcan_file_Write_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_,
"Internal constraint violation");
/// Array metadata for: saturated uint8[<=192] data
#define uavcan_file_Write_Request_1_0_data_ARRAY_CAPACITY_ 192U
#define uavcan_file_Write_Request_1_0_data_ARRAY_IS_VARIABLE_LENGTH_ true
typedef struct
{
/// truncated uint40 offset
uint64_t offset;
/// uavcan.file.Path.1.0 path
uavcan_file_Path_1_0 path;
/// saturated uint8[<=192] data
struct /// Array address equivalence guarantee: &elements[0] == &data
{
uint8_t elements[uavcan_file_Write_Request_1_0_data_ARRAY_CAPACITY_];
size_t count;
} data;
} uavcan_file_Write_Request_1_0;
/// Serialize an instance into the provided buffer.
/// The lifetime of the resulting serialized representation is independent of the original instance.
/// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision
/// we may define a zero-copy alternative that keeps references to the original object where possible.
///
/// @param obj The object to serialize.
///
/// @param buffer The destination buffer. There are no alignment requirements.
/// @see uavcan_file_Write_Request_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_
///
/// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes.
/// Upon return this value will be updated with the size of the constructed serialized
/// representation (in bytes); this value is then to be passed over to the transport
/// layer. In case of error this value is undefined.
///
/// @returns Negative on error, zero on success.
static inline int8_t uavcan_file_Write_Request_1_0_serialize_(
const uavcan_file_Write_Request_1_0* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes)
{
if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL))
{
return -NUNAVUT_ERROR_INVALID_ARGUMENT;
}
const size_t capacity_bytes = *inout_buffer_size_bytes;
if ((8U * (size_t) capacity_bytes) < 2488UL)
{
return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL;
}
// Notice that fields that are not an integer number of bytes long may overrun the space allocated for them
// in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe.
size_t offset_bits = 0U;
{ // truncated uint40 offset
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits + 40ULL) <= (capacity_bytes * 8U));
const int8_t _err0_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, obj->offset, 40U);
if (_err0_ < 0)
{
return _err0_;
}
offset_bits += 40U;
}
if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks.
{
const uint8_t _pad0_ = (uint8_t)(8U - offset_bits % 8U);
NUNAVUT_ASSERT(_pad0_ > 0);
const int8_t _err1_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad0_); // Optimize?
if (_err1_ < 0)
{
return _err1_;
}
offset_bits += _pad0_;
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
}
{ // uavcan.file.Path.1.0 path
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits + 904ULL) <= (capacity_bytes * 8U));
size_t _size_bytes0_ = 113UL; // Nested object (max) size, in bytes.
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits / 8U + _size_bytes0_) <= capacity_bytes);
int8_t _err2_ = uavcan_file_Path_1_0_serialize_(
&obj->path, &buffer[offset_bits / 8U], &_size_bytes0_);
if (_err2_ < 0)
{
return _err2_;
}
// It is assumed that we know the exact type of the serialized entity, hence we expect the size to match.
NUNAVUT_ASSERT((_size_bytes0_ * 8U) >= 8ULL);
NUNAVUT_ASSERT((_size_bytes0_ * 8U) <= 904ULL);
offset_bits += _size_bytes0_ * 8U; // Advance by the size of the nested object.
NUNAVUT_ASSERT(offset_bits <= (capacity_bytes * 8U));
}
{ // saturated uint8[<=192] data
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits + 1544ULL) <= (capacity_bytes * 8U));
if (obj->data.count > 192)
{
return -NUNAVUT_ERROR_REPRESENTATION_BAD_ARRAY_LENGTH;
}
// Array length prefix: truncated uint8
buffer[offset_bits / 8U] = (uint8_t)(obj->data.count); // C std, 6.3.1.3 Signed and unsigned integers
offset_bits += 8U;
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
for (size_t _index0_ = 0U; _index0_ < obj->data.count; ++_index0_)
{
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits + 8ULL) <= (capacity_bytes * 8U));
// Saturation code not emitted -- native representation matches the serialized representation.
buffer[offset_bits / 8U] = (uint8_t)(obj->data.elements[_index0_]); // C std, 6.3.1.3 Signed and unsigned integers
offset_bits += 8U;
}
}
if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks.
{
const uint8_t _pad1_ = (uint8_t)(8U - offset_bits % 8U);
NUNAVUT_ASSERT(_pad1_ > 0);
const int8_t _err3_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad1_); // Optimize?
if (_err3_ < 0)
{
return _err3_;
}
offset_bits += _pad1_;
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
}
// It is assumed that we know the exact type of the serialized entity, hence we expect the size to match.
NUNAVUT_ASSERT(offset_bits >= 56ULL);
NUNAVUT_ASSERT(offset_bits <= 2488ULL);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
*inout_buffer_size_bytes = (size_t) (offset_bits / 8U);
return NUNAVUT_SUCCESS;
}
/// Deserialize an instance from the provided buffer.
/// The lifetime of the resulting object is independent of the original buffer.
/// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision
/// we may define a zero-copy alternative that keeps references to the original buffer where possible.
///
/// @param obj The object to update from the provided serialized representation.
///
/// @param buffer The source buffer containing the serialized representation. There are no alignment requirements.
/// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated,
/// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules.
///
/// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized
/// representation, in bytes. Upon return this value will be updated with the
/// size of the consumed fragment of the serialized representation (in bytes),
/// which may be smaller due to the implicit truncation rule, but it is guaranteed
/// to never exceed the original buffer size even if the implicit zero extension rule
/// was activated. In case of error this value is undefined.
///
/// @returns Negative on error, zero on success.
static inline int8_t uavcan_file_Write_Request_1_0_deserialize_(
uavcan_file_Write_Request_1_0* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes)
{
if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes)))
{
return -NUNAVUT_ERROR_INVALID_ARGUMENT;
}
if (buffer == NULL)
{
buffer = (const uint8_t*)"";
}
const size_t capacity_bytes = *inout_buffer_size_bytes;
const size_t capacity_bits = capacity_bytes * (size_t) 8U;
size_t offset_bits = 0U;
// truncated uint40 offset
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
out_obj->offset = nunavutGetU64(&buffer[0], capacity_bytes, offset_bits, 40);
offset_bits += 40U;
offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits.
// uavcan.file.Path.1.0 path
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
{
size_t _size_bytes1_ = (size_t)(capacity_bytes - nunavutChooseMin((offset_bits / 8U), capacity_bytes));
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
const int8_t _err4_ = uavcan_file_Path_1_0_deserialize_(
&out_obj->path, &buffer[offset_bits / 8U], &_size_bytes1_);
if (_err4_ < 0)
{
return _err4_;
}
offset_bits += _size_bytes1_ * 8U; // Advance by the size of the nested serialized representation.
}
// saturated uint8[<=192] data
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
// Array length prefix: truncated uint8
if ((offset_bits + 8U) <= capacity_bits)
{
out_obj->data.count = buffer[offset_bits / 8U] & 255U;
}
else
{
out_obj->data.count = 0U;
}
offset_bits += 8U;
if (out_obj->data.count > 192U)
{
return -NUNAVUT_ERROR_REPRESENTATION_BAD_ARRAY_LENGTH;
}
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
for (size_t _index1_ = 0U; _index1_ < out_obj->data.count; ++_index1_)
{
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
if ((offset_bits + 8U) <= capacity_bits)
{
out_obj->data.elements[_index1_] = buffer[offset_bits / 8U] & 255U;
}
else
{
out_obj->data.elements[_index1_] = 0U;
}
offset_bits += 8U;
}
offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits.
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
*inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U);
NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes);
return NUNAVUT_SUCCESS;
}
/// Initialize an instance to default values. Does nothing if @param out_obj is NULL.
/// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length
/// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field
/// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)).
static inline void uavcan_file_Write_Request_1_0_initialize_(uavcan_file_Write_Request_1_0* const out_obj)
{
if (out_obj != NULL)
{
size_t size_bytes = 0;
const uint8_t buf = 0;
const int8_t err = uavcan_file_Write_Request_1_0_deserialize_(out_obj, &buf, &size_bytes);
NUNAVUT_ASSERT(err >= 0);
(void) err;
}
}
// +-------------------------------------------------------------------------------------------------------------------+
// | uavcan.file.Write.Response.1.0
// +-------------------------------------------------------------------------------------------------------------------+
#define uavcan_file_Write_Response_1_0_FULL_NAME_ "uavcan.file.Write.Response"
#define uavcan_file_Write_Response_1_0_FULL_NAME_AND_VERSION_ "uavcan.file.Write.Response.1.0"
/// Extent is the minimum amount of memory required to hold any serialized representation of any compatible
/// version of the data type; or, on other words, it is the the maximum possible size of received objects of this type.
/// The size is specified in bytes (rather than bits) because by definition, extent is an integer number of bytes long.
/// When allocating a deserialization (RX) buffer for this data type, it should be at least extent bytes large.
/// When allocating a serialization (TX) buffer, it is safe to use the size of the largest serialized representation
/// instead of the extent because it provides a tighter bound of the object size; it is safe because the concrete type
/// is always known during serialization (unlike deserialization). If not sure, use extent everywhere.
#define uavcan_file_Write_Response_1_0_EXTENT_BYTES_ 48UL
#define uavcan_file_Write_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_ 2UL
static_assert(uavcan_file_Write_Response_1_0_EXTENT_BYTES_ >= uavcan_file_Write_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_,
"Internal constraint violation");
typedef struct
{
/// uavcan.file.Error.1.0 error
uavcan_file_Error_1_0 _error;
} uavcan_file_Write_Response_1_0;
/// Serialize an instance into the provided buffer.
/// The lifetime of the resulting serialized representation is independent of the original instance.
/// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision
/// we may define a zero-copy alternative that keeps references to the original object where possible.
///
/// @param obj The object to serialize.
///
/// @param buffer The destination buffer. There are no alignment requirements.
/// @see uavcan_file_Write_Response_1_0_SERIALIZATION_BUFFER_SIZE_BYTES_
///
/// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the buffer in bytes.
/// Upon return this value will be updated with the size of the constructed serialized
/// representation (in bytes); this value is then to be passed over to the transport
/// layer. In case of error this value is undefined.
///
/// @returns Negative on error, zero on success.
static inline int8_t uavcan_file_Write_Response_1_0_serialize_(
const uavcan_file_Write_Response_1_0* const obj, uint8_t* const buffer, size_t* const inout_buffer_size_bytes)
{
if ((obj == NULL) || (buffer == NULL) || (inout_buffer_size_bytes == NULL))
{
return -NUNAVUT_ERROR_INVALID_ARGUMENT;
}
const size_t capacity_bytes = *inout_buffer_size_bytes;
if ((8U * (size_t) capacity_bytes) < 16UL)
{
return -NUNAVUT_ERROR_SERIALIZATION_BUFFER_TOO_SMALL;
}
// Notice that fields that are not an integer number of bytes long may overrun the space allocated for them
// in the serialization buffer up to the next byte boundary. This is by design and is guaranteed to be safe.
size_t offset_bits = 0U;
{ // uavcan.file.Error.1.0 error
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits + 16ULL) <= (capacity_bytes * 8U));
size_t _size_bytes2_ = 2UL; // Nested object (max) size, in bytes.
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT((offset_bits / 8U + _size_bytes2_) <= capacity_bytes);
int8_t _err5_ = uavcan_file_Error_1_0_serialize_(
&obj->_error, &buffer[offset_bits / 8U], &_size_bytes2_);
if (_err5_ < 0)
{
return _err5_;
}
// It is assumed that we know the exact type of the serialized entity, hence we expect the size to match.
NUNAVUT_ASSERT((_size_bytes2_ * 8U) == 16ULL);
offset_bits += _size_bytes2_ * 8U; // Advance by the size of the nested object.
NUNAVUT_ASSERT(offset_bits <= (capacity_bytes * 8U));
}
if (offset_bits % 8U != 0U) // Pad to 8 bits. TODO: Eliminate redundant padding checks.
{
const uint8_t _pad2_ = (uint8_t)(8U - offset_bits % 8U);
NUNAVUT_ASSERT(_pad2_ > 0);
const int8_t _err6_ = nunavutSetUxx(&buffer[0], capacity_bytes, offset_bits, 0U, _pad2_); // Optimize?
if (_err6_ < 0)
{
return _err6_;
}
offset_bits += _pad2_;
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
}
// It is assumed that we know the exact type of the serialized entity, hence we expect the size to match.
NUNAVUT_ASSERT(offset_bits == 16ULL);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
*inout_buffer_size_bytes = (size_t) (offset_bits / 8U);
return NUNAVUT_SUCCESS;
}
/// Deserialize an instance from the provided buffer.
/// The lifetime of the resulting object is independent of the original buffer.
/// This method may be slow for large objects (e.g., images, point clouds, radar samples), so in a later revision
/// we may define a zero-copy alternative that keeps references to the original buffer where possible.
///
/// @param obj The object to update from the provided serialized representation.
///
/// @param buffer The source buffer containing the serialized representation. There are no alignment requirements.
/// If the buffer is shorter or longer than expected, it will be implicitly zero-extended or truncated,
/// respectively; see Specification for "implicit zero extension" and "implicit truncation" rules.
///
/// @param inout_buffer_size_bytes When calling, this is a pointer to the size of the supplied serialized
/// representation, in bytes. Upon return this value will be updated with the
/// size of the consumed fragment of the serialized representation (in bytes),
/// which may be smaller due to the implicit truncation rule, but it is guaranteed
/// to never exceed the original buffer size even if the implicit zero extension rule
/// was activated. In case of error this value is undefined.
///
/// @returns Negative on error, zero on success.
static inline int8_t uavcan_file_Write_Response_1_0_deserialize_(
uavcan_file_Write_Response_1_0* const out_obj, const uint8_t* buffer, size_t* const inout_buffer_size_bytes)
{
if ((out_obj == NULL) || (inout_buffer_size_bytes == NULL) || ((buffer == NULL) && (0 != *inout_buffer_size_bytes)))
{
return -NUNAVUT_ERROR_INVALID_ARGUMENT;
}
if (buffer == NULL)
{
buffer = (const uint8_t*)"";
}
const size_t capacity_bytes = *inout_buffer_size_bytes;
const size_t capacity_bits = capacity_bytes * (size_t) 8U;
size_t offset_bits = 0U;
// uavcan.file.Error.1.0 error
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
{
size_t _size_bytes3_ = (size_t)(capacity_bytes - nunavutChooseMin((offset_bits / 8U), capacity_bytes));
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
const int8_t _err7_ = uavcan_file_Error_1_0_deserialize_(
&out_obj->_error, &buffer[offset_bits / 8U], &_size_bytes3_);
if (_err7_ < 0)
{
return _err7_;
}
offset_bits += _size_bytes3_ * 8U; // Advance by the size of the nested serialized representation.
}
offset_bits = (offset_bits + 7U) & ~(size_t) 7U; // Align on 8 bits.
NUNAVUT_ASSERT(offset_bits % 8U == 0U);
*inout_buffer_size_bytes = (size_t) (nunavutChooseMin(offset_bits, capacity_bits) / 8U);
NUNAVUT_ASSERT(capacity_bytes >= *inout_buffer_size_bytes);
return NUNAVUT_SUCCESS;
}
/// Initialize an instance to default values. Does nothing if @param out_obj is NULL.
/// This function intentionally leaves inactive elements uninitialized; for example, members of a variable-length
/// array beyond its length are left uninitialized; aliased union memory that is not used by the first union field
/// is left uninitialized, etc. If full zero-initialization is desired, just use memset(&obj, 0, sizeof(obj)).
static inline void uavcan_file_Write_Response_1_0_initialize_(uavcan_file_Write_Response_1_0* const out_obj)
{
if (out_obj != NULL)
{
size_t size_bytes = 0;
const uint8_t buf = 0;
const int8_t err = uavcan_file_Write_Response_1_0_deserialize_(out_obj, &buf, &size_bytes);
NUNAVUT_ASSERT(err >= 0);
(void) err;
}
}
#ifdef __cplusplus
}
#endif
#endif // UAVCAN_FILE_WRITE_1_0_INCLUDED_